Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/23548
DC FieldValueLanguage
dc.contributor楊文明zh_TW
dc.contributor楊武勇zh_TW
dc.contributor.advisor許文輝zh_TW
dc.contributor.advisorWen-Hwei Hsuen_US
dc.contributor.author卓燕菁zh_TW
dc.contributor.authorCho, Yen-Chingen_US
dc.contributor.other中興大學zh_TW
dc.date2011zh_TW
dc.date.accessioned2014-06-06T07:20:38Z-
dc.date.available2014-06-06T07:20:38Z-
dc.identifierU0005-2407201012163100zh_TW
dc.identifier.citation1.田蔚城。1999。生物產業與製藥產業。九州圖書,台北市。 2.何子樂。1998。洋地黃、麻黃、大麻。科學月刊,第345 期,頁35-42。 3.李澤維。1981。最新藥物化學,第五版。南山堂。台北市,台灣。 4.金明儒。1980。有機藥物化學。財團法人中華藥學研究基金會,台北市。 5.吳昭燕。2003。生化反應的催化劑酵素。科學發展,第370期,頁42-47。 6.徐人英。1975。藥物化學。合記圖書出版社,台北市。 7.秦道堅。1982。近代有機藥物化學。維新書局,台北市。 8.許桂森。2002。簡明圖解藥理學。藝軒圖書,台北市。 9.陳建宇。2009。Rhodococcus spp. Aminoketone reductase之基因選殖、特性分析及其應用於phenylephrine之生產。碩士論文,分子生物學研究所,中興大學,台中市。 10.陳慧中。2006。酮基還原酵素之篩選俾應用於L-phenylephrine 之生合成。碩士論文,分子生物學研究所,中興大學,台中市。 11.傅則凱。2009。選殖serratia菌屬之ketone reductase 得將HPMAE轉換成L-phenylephrine。碩士論文,分子生物學研究所,中興大學,台中市。 12.管宜家。2003。Aspergillus oryzae leucine aminopeptidase基因的調控與表現。碩士論文,分子生物學研究所,中興大學,台中市。 13.羅雪霞。2004。利用新的酵素法生產L-Homophenylalanine。博士論文,分子生物學研究所,中興大學,台中市。 14.華北製藥集團公司。2002。中國醫藥經貿網:http://www.ncpc.com.cn/news/, 河北省。 15.智慧藏學習科技股份有限公司。1991。中國大百科全書智慧藏: http://203.68.243.199/cpedia/Default.htm,台北市。 16.Aiying, L., I. Takayuki, T. Takaaki, X. Ting, E. Yutaka, and I. Koji. 2005. Functional studies on a ketoreductase gene from Streptomyces sp. AM-7161 to control the stereochemistry in medermycin biosynthesis. Bioorg. Med. Chem. 13: 6856-6863. 17.Amemura, A., Chakraborty, R., Fujita, M., Noumi, T., and Futai, M. 1988. Cloning and nucleotide sequence of the isoamylase gene from Pseudomonas amyloderamosa SB-15. J Biol Chem. 263: 9271-5. 18.American Type Culture Collection. Sept. 1972. Method for producing protease. U.S. patent 3,691,014. 19.Burkovski, A. 2008. Corynebacteria: Genomics and Molecular Biology. 20.Cadwell, R. C., and C. F. Joyce. 1992. Randomization of genes by PCR mutagenesis. PCR Methods and Appl. 2: 28-33. 21.Deorukhkar, A. A., R. Chander, S. B. Ghosh, and K. B. Sainis. 2007. Identification of a red-pigmented bacterium producing a potent anti-tumor N-alkylated prodigiosin as Serratia marcescens. Res. Microbiol. 158: 399-404. 22.Dorokhova, M. I., Somelina, N. E., Tikhonova, O. Ya. and Mikahalev, V. A. 1974. Inversion of configuration of optically active 1-m-nitrophenyl-2- methylamino ethanol. Pharm. Chem. J. 8: 209-211. 23.Faber, K. 2000. Biotransformations in organic chemistry. Springer-Verlag, Heidelberg, Berlin. 24.Fessner, W. D. 2000. Biocatalysis- from discovery to application. Springer-Verlag, Heidelberg, Berlin. 25.Gilman, A.G., Goodman, L.S., Hardman, J.G., and Limbird, L.E. 2001. Goodman & Gilman''s the pharmacological basis of therapeutics, 10th ed. McGraw-Hill, New York, N.Y. 26.Gotor, V. 2000. Pharmaceuticals through enzymatic transesterification and enzymatic aminolysis reactions. Biocat Biotrans. 18: 87-103. 27.Holt, P. J., Williams, R. E., Jordan, K. N., Lowe, C. R. and Bruce, N. C. 2000. Cloning, sequencing and expression in Escherichia coli of the primary alcohol dehydrogenase gene from Thermoanaerobacter ethanolicus JW200. FEMS Microbiol. Lett. 190: 57-62. 28.Jin-Myeong Cha, Kyung-Hoon Cheong, Wol-Suk Cha, DuBok Choi, Sung-Hee Roh and Sun-Il Kim. 2004. Optimal conditions for chitinase production by Serratia marcescens. Biotechnology and Bioprocess Engineering, 9: 297-302. 29.Jones DT. 1999. Protein secondary structure prediction based on position-specific scoring matrices. J. Mol. 292: 195-202. 30.Jones, J. D. G., K.L. Grady, T.V. Suslow, and J.R. Bedbrook. 1986. Isolation and characterization of genes encoding two chitinase enzymes from Serratia marcescens. EMBO J. 5: 473-476. 31.Jornvall H, et. al. 1995. Short-chain dehydrogenases/reductases (SDR). Biochemistry, 34: 6003-6013. 32.Jornvall, H., Hoog, J.O., and Persson, B. 1999. SDR and MDR: Completed genome sequences show these protein families to be large of old origin, and of complex nature. FEBS Lett. 445: 261-264. 33.Kataoka, M., K. Kita, M. Wada, Y. Yasohara, J. Hasegawa, and S. Shimizu. 2003. Novel bioreduction system for the production of chiral alcohols. Appl. Microbiol. Biotechnol. 62: 437-445. 34.Kataoka, M., T., Ishige, N., Urano, Y., Nakamura, E., Sakuradani, S., Fukui, S., Kita, K., Sakamoto, and S., Shimizu. 2008. Cloning and expression of the L-1-amino-2-propanol dehydrogenase gene from Rhodococcus erythropolis, and its application to double chiral compound production. Appl. Microbiol. Biotechnol. 80: 597-604. 35.Katzung, B. G. 2001. Basic and clinical pharmacology, 8th ed. McGraw-Hill, New York. 36.Korkhin, Y., Kalb, A. J., Peretz, M., Bogin, O., Burstein,Y., and Frolow, F. 1998. NADP-dependent bacterial alcohol dehydrogenases: Crystal structure, cofactor-binding and cofactor specificity of the ADHs of Clostridium beijerinckii and Thermoanaerobacter brockii. J. Mol. Biol. 278: 967-981. 37.Kousuke, I., M. Yoshihide, and I. Nobuya. 2005. Purification and characterization of a novel alcohol dehydrogenase from Leifsonia sp. strain S749: a promising biocatalyst for an asymmetric hydrogen transfer bioreduction. Appl. Environ. Microbiol. 71: 3633-3641. 38.Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 227: 680-685. 39.Loyd, V., Allen, Jr., and Berardi, R. R. 2002. Handbook of nonprescription drugs, 13th ed. Alpha Publications, Washington, DC. 40.Mahmoudian, M. 2000. Biocatalytic production of chiral pharmaceutical intermediates. Biocat Biotrans. 18: 105-16. 41.Manchenko, G. P. 1994. Handbook of Detection of Enzymes on electrophoretic Gels. CRC Press, Boca Raton, Florida. 42.Meadows, M. 2001. FDA issues public health advisory on phenylpropanolamine in drug products. FDA Consum. 35: 9. 43.Montaner, B., S. Navarro, M. Piqué, M. Vilaseca, M. Martinell, E. Giralt, J. Gil, and R. Pérez-Tomás. 2000. Prodigiosin from the supernatant of Serratia marcescens induces apoptosis in haematopoietic cancer cell lines. Br. J. Pharmacol. 131: 585-593. 44.News-register.com. 2005. Drug companies consider substitute for cold medicine, McMinnville, Oregon. 45.O’Brien, M. K., and Vanasse, B. 2000. Asymmetric processes in the large-scale preparation of chiral drug candidates. Curr Opin Drug Discov Dev. 3: 793-806. 46.Patel, R. N. 2001. Biocatalytic synthesis of intermediates for the synthesis of chiral drug substances. Curr. Opin. Biotechnol. 12: 587-604. 47.Patel, R. N. 2000. Microbial/enzymatic synthesis of chiral drug intermediates. Adv Appl Microbiol. 47: 33-78. 48.Qing, C., A. Terry, M. Theresa, and P. Mark. 2007. Functional studies of aldo-keto reductases in Saccharomyces cerevisiae. Biochim. Biophys. Acta. 1773: 49.Reili, M., Mikio, N., Yasushi., I., Seiji, I,. and Masami, I. 2002. The enzymes with benzil reductase activity conserved from bacteria to mammals. J. Biotechnol. 94: 157-169. 50. Sakamoto, K. 2004. Aminoketone asymmetric reductase and nucleic acid thereof.US 20040247583 A1 51.Sambrook, J., Fritsh, E. F., and Maniatis, E. F. 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold spring harbor laboratory press, Cold spring harbor, N. Y. 52.Sohail, M. 1998. A simple and rapid method for preparing genomic DNA from gram-positive bacteria. Mol Biotechnol. 10: 191-3. 53.Treadway, S.L., Yanagimachi, K. S., Lankenau, E., Lessard, P. A., Stephanopoulos, G., and Sinskey, A. J. 1999. Isolation and characterization of indene bioconversion genes from Rhodococcus strain I24. Appl. Microbiol. Biotechnol. 51: 786-793. 54.Udo, O., Charlotta, F., Malin, H., Naeem, S., Xiaoqiu, W., Monica L., Jawed, S., Erik, N., Yvonne, K., Bengt, P., Hans, J. 2003. Short-chain dehydrogenases/reductases (SDR): the 2002 update. Chem. Biolo. Interactions. 247-253. 55.Yvonne, K., Oppermann, U., Jornvall, H. and Persson, B. 2002. Short-chain dehydrogenase/reductase (SDR) relationships: a large family with eight common to human, animal, and plant genomes. Protein Sci. 11: 636-641. 56.Zak, A. 2001. Industrial biocatalysis. Curr Opin Chem Biol. 5: 130-36.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/23548-
dc.description.abstract本研究以微生物轉換法來進行L-PE的合成,希望篩選到能將前驅物1-(3-hydroxyphenyl)-2-(methylamino)ethanone(HPMAE)不對稱還原成L-PE的酵素。利用S. quinivorans BCRC 14811菌體可將HPMAE轉換成L-PE (e.e >99%),轉換率為15%。在培養過程中加入2-phenylethanol及acetophenone,轉換率可由原來的15%提升為88%及83%。利用pQE30做為表現載體以及對HPMAE敏感的Escherichia coli NovaBlue作為宿主,建構S. quinivorans BCRC 14811的基因庫,使用含有1~10 mM HPMAE之Luria-Bertani平板進行篩選。然而,並沒有得到任何具有HPMAE還原能力的轉型株。本研究由S. quinivorans BCRC 14811基因組序列中,選殖到short-chain dehydrogenase/reductase (SDR)基因,將此基因選殖並表現於E. coli,發現表現SDR蛋白之E. coli BL21(DE3)(pET30a-sdr-39729)轉型株能專一地將HPMAE還原成D-PE(e.e >99%)。由於反應受質HPMAE在室溫下久置容易分解,以10 mM HPMAE作為反應受質時,轉換率為89%,將HPMAE的濃度提高為60 mM時,轉換率可達94%。利用IMAC進行SDR酵素純化並分析酵素活性,發現SDR可利用NADPH或NADH做為輔酶(cofactor),比活性分別為257 U/mg及285 U/mg。zh_TW
dc.description.abstractIn order to avoid involved in the chemical synthesis method, the present study was designed to use a biotransformation approach to produce L-PE from 1-(3-hydroxyphenyl)-2-(methylamino) ethanone (HPMAE). We found that S. quinivorans BCRC 14811 could convert HPMAE to L-PE with 15% of yield. Addition of 2-phenylethanol and acetophenone in the culture medium could increase conversion yield from 15% to 88% and 83%, respectively. A genomic library of S. quinivorans BCRC 14811 was constructed for the screening of clones capable of converting HPMAE to PE using pQE30 as cloning vector and HPMAE-sensitive Escherichia coli NovaBlue as host cell. Luria-Bertani plate containing 1 to 10 mM HPMAE were used as the selection medium. However no positive clone was obtained. Short-chain dehydrogenase / reductase (SDR) was cloned from S. quinivorans BCRC 14811 by PCR. When the sdr gene was expressed in E. coli BL21(DE3), the recombinant E. coli cell can convert 10 mM HPMAE to 8.9 mM D-PE with a yield of about 89% and 60 mM HPMAE to 56.2 mM D-PE with a conversion yield of 94%. The SDR was purified by immobilized metal affinity chromatography. Enzyme activity assay demonstrated that the SDR protein could uses NADPH and NADH as cofactors, which exhibit a specific activities of 257 U/mg and 285 U/mg, respectively.en_US
dc.description.tableofcontents中文摘要-----------------------------------------------i Abstract----------------------------------------------ii 目次-------------------------------------------------iii 表目次------------------------------------------------vi 圖目次-----------------------------------------------vii 縮寫對照表--------------------------------------------ix 前言--------------------------------------------------1 一、常見的類腎上腺素藥物------------------------------1 二、L-PE 的化學合成法及生物轉換法---------------------2 三、Short-chain dehydrogenase / reductase ------------2 四、Serratia 菌屬-------------------------------------3 五、前人研究------------------------------------------4 六、研究動機及策略------------------------------------4 材料與方法--------------------------------------------5 一、 化學藥品與酵素-----------------------------------5 二、 菌株、質體與培養基-------------------------------5 三、 高效能液相層析 (High performance liquid chromatography, HPLC)---------------------------------5 (一) HPMAE與PE 之分析---------------------------------5 (二) D-PE 與L-PE 之分析-------------------------------6 四、 基因的選殖、表現與純化---------------------------6 (一) 引子 (primer)的設計------------------------------6 (二) 聚合酵素連鎖反應 (Polymerase chain reaction, PCR)------------------------------------------------------------6 (三) E. coli 質體DNA 的小量抽取-----------------------7 (四) DNA 洋菜膠體電泳分析-----------------------------7 (五) DNA 片段的回收及純化-----------------------------8 (六) DNA 純度的鑑定及定量分析-------------------------8 (七) DNA 的黏合反應 (ligation)------------------------8 (八) 質體轉型作用-------------------------------------8 (九) 染色體DNA 的純化---------------------------------9 (十) 蛋白質純化及定量---------------------------------9 (十一) 蛋白質電泳分析--------------------------------10 五、 酵素活性分析------------------------------------11 六、 以全細胞轉換HPMAE生產PE之分析-------------------11 (一) 碳源的分析--------------------------------------11 (二) pH值的分析--------------------------------------11 (三) 溫度的分析--------------------------------------11 (四) 受質濃度之分析----------------------------------12 (五) 菌體之回收再利用之分析--------------------------12 七、 篩選具有HPMAE 還原能力的基因--------------------12 (一) 誘導劑的添加------------------------------------12 (二) 利用含有HPMAE 的平板進行基因的篩選--------------13 八、 選殖具有HPMAE還原能力的基因---------------------14 結果-------------------------------------------------15 一、 S. quinivorion BCRC14811 全細胞轉換HPMAE 生產PE 之分析------------------------------------------------------15 二、 篩選具有HPMAE 還原能力的基因--------------------15 (一) 利用誘導劑對HPMAE 轉換成PE 的差異性篩選基因-----15 (二) 利用含HPMAE 的平板進行基因的篩選----------------16 三、 選殖具有HPMAE 還原能力的基因--------------------16 (一) akr 和及adh 基因的選殖--------------------------16 (二) 表現sdr 基因的E. coli BL21 (DE3) (pET30a-sdr-39729)之蛋白純化及酵素活性分析---------------------------------17 (三) 表現sdr基因的E. coli BL21 (DE3) (pET30a-sdr-39729)全細胞轉換HPMAE生產PE之分析------------------------------18 討論-------------------------------------------------20 一、 以生物轉換法生產PE------------------------------20 二、 篩選具有HPMAE還原能力的基因---------------------21 三、 選殖具有HPMAE還原能力的基因---------------------21 結論-------------------------------------------------24 參考文獻---------------------------------------------52zh_TW
dc.language.isoen_USzh_TW
dc.publisher生命科學院碩士在職專班zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2407201012163100en_US
dc.subjectBioconversionen_US
dc.subjectL型苯腎上腺素zh_TW
dc.subjectL-phenylephrineen_US
dc.subjectShort-chain dehydrogenase/reductaseen_US
dc.subject短鏈去氫酶/還原酶zh_TW
dc.title利用Serratia quinivorans BCRC 14811之short-chain dehydrogenase/reductase立體選擇性生產phenylephrinezh_TW
dc.titleStereoselective production of phenylephrine by short-chain dehydrogenase/reductase from Serratia quinivorans BCRC 14811en_US
dc.typeThesis and Dissertationzh_TW
item.openairetypeThesis and Dissertation-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en_US-
item.grantfulltextnone-
item.fulltextno fulltext-
item.cerifentitytypePublications-
Appears in Collections:生命科學系所
Show simple item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.