Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/2355
標題: 新型奈米碳管紅外光感測元件製備
Development of a novel single-walled carbon nanotube infrared sensor
作者: 王啟光
Wang, Chi-Guang
關鍵字: 紅外線感測器;IR sensor;陽極氧化鋁膜版;類金氧場效電晶體;AAO;MOSFET
出版社: 機械工程學系所
引用: 參考文獻 [1] S. Iijima, “Helical microtubules of graphitic carbon,” Nature 354 (1991). [2] H. W. Kroto, J. R. Heath, S. C. O`Brien, R. F. Curl, R. E. Smalley, “C60: Buckminsterfullerene,” Nature 318, 162 (1985). [3] W. I. Park, G. C. Yi, M. Kim, and S. J. Pennycook, “Quantum Confinement Observed in ZnO/ZnMgO Nanorod Heterostructures,” Adv. Mater. 15 (6), 526-529 (2003). [4] Y. T. Pang, G. W. Meng, L. D. Zhang, W. J. Shan, C. Zhang, X. Y. Gao, A. W. Zhao, and Y. Q. Mao, “Electrochemical synthesis of ordered alumina nanowire arrays,” J Solid State Electrochem 7, 344-347 (2003). [5] G. B. Ji, W. Chen, S. L. Tang, B. X. Gu, Z. Li, and Y. W. Du, “Fabrication and magnetic properties of ordered 20 nm Co–Pb nanowire arrays,” Solid State Communications 130, 541-545 (2004). [6] M. Mikhaylova, M. Toprak, D. K. Kim, Y. Zhang, and M. Muhammed, “Nanowire formation by electrodeposition in modified nanoporous polycrystalline anodic alumina templates,” Mat. Res. Soc. Symp. Proc. 704, 6.34.1-6.34.6 (2002). [7] Y. Fanga, D. Agrawala, G. Skandanb, and M. Jainb, “Fabrication of translucent MgO ceramics using nanopowders,” Materials Letters 58, 551– 554 (2004). [8] X. Wang, G. R. Han, “Fabrication and characterization of anodic aluminum oxide template,” Microelectronic Engineering 66, 166–170 (2003). [9] C. R. Martin “Nanomaterials: a membrane-based systhetic approach,” Science, 266, 1961-1966. (1994). [10] H. Masuda and K. Fukuda, “Alumina nanoporous structures,” Science, 268, 1466-1468 (1995). [11] P. Yang, Y. Wu, R. Fang, “Inorganic semiconductor nanowires,” Int. J. Nanosci, 1:1-39. (2002). [12] P. I. Wang, Y. P. Zhao, G. C. Wang, T. M. Lu, “Novel growth mechanism of single crystalline Cu nanorods by electron beam irradiation,” Nanotechnology, 15, 218-222. (2004). [13] I. Lisiecki, H. Sack-Kongehl, K. Weiss, J. Urban, M. P. Pileni, “Annealing process of anisotropic copper nanocrystals. 2. rods,” Langmuir, 16, 8807-8808. (2000). [14] T. Gao, G.W. Meng, J. Zhang, Y. W. Wang, C. H. Liang, J. C. Fan, L. D. Zhang, “Template synthesis of single-crystal Cu nanowire arrays by electrodeposition,” Materials Science and Processing, 73, n 2, 251-254. (2001). [15] M. P. Zach, K. H. Ng, R. M. Penner, “Molybdenum nanowires by electro deposition,” Science, 290, 2120-2123. (2000). [16] H. W. Wang, C. F. Shieh, H. Y. Chen, W. C. Shiu, B. Russo, G. Cao, “Standing [111] gold nanotube to nanorod arrays via template growth,” Nanotechnology, 17, 2689-2694. (2006) [17] M. E. Itkis, S. Niyogi, M. E. Meng, M. A. Hamon, H. Hu, R. C. Haddon, ”Spectroscopic Study of the Fermi Level Electronic Structure of Single-Walled Carbon Nanotubes,” Nano Lett., 2, 155-159, (2002) [18] M. Freitag, Y. Martin, J. A. Misewich, R. Martel, and Ph. Avouris., ” Photoconductivity of Single Carbon Nanotubes, ” Nano Lett., 3, 1067-1071, (2003) [19] I. A. Levitsky, and W. B. Euler, ”Photoconductivity of single-wall carbon nanotubes under continuous-wave near-infrared illumination, ” Appl. Phys. Lett., 83, 1857-1859, (2003) [20] A. Fujiwara, Y. Matsuoka, Y. Matsuoka, H. Suematsu, N. Ogawa, K. Miyano, H. Kataura, Y. Maniwa, S. Suzuki Y. Achiba, ”Photoconductivity of single-wall carbon nanotube films, ” Carbon, 42, 919-922, (2004). [21] M. E. Itkis, F. Borondics, A. Yu, R. C. Haddo, “Bolometric Infrared Photoresponse of Suspended Single-Walled Carbon Nanotube Films, ” Science, 312, 21, 413-416, (2006). [22] S. Lu and B. Panchapakesan, “Photoconductivity in single wall carbon nanotube sheets, ” Nanotechnology, 17, 1843-1850, (2006). [23] D. H. Lien, W. K. Hsu, H. W. Zan, N. H. Tai, C. H. Tsai, ” Photocurrent Amplification at Carbon Nanotube-Metal Contacts, ” Advanced Materials, 18, 98-103, (2006) [24] B. Pradhan, K. Setyowati, H. Liu, D. H. Waldeck, and J. Chen, ”Carbon Nanotube-Polymer Nanocomposite Infrared Sensor, ” Nano Lett., 8, 4, 1142-1146, (2008). [25] B. Sankapal, K. Setyowati, J. Chen, H. Liu, ” Electrical properties of air-stable, iodine-doped carbon-nanotube–polymercomposites, ” Appl. Phys. Lett., 91, 173103, (2007). [26] M. Shimand, G. P. Siddons, ” Photoinduced conductivity changes in carbon nanotube transistors, ” Appl. Phys. Lett. 93, 3564, (2003).
摘要: 
本研究提出以陽極氧化鋁膜(Anodic Alumina Oxide, AAO)為基材,在陽極氧化鋁膜板背面以微影蝕刻製作寬為500m、長度1.2 cm之微流道,再於微流道中沉積單壁奈米碳管(SWNTs),接著於基板上相對於微流道之另一面濺鍍一層金薄膜為閘極,然後在奈米碳管上澆注一層高分子聚二甲基矽氧烷(PDMS)當作保護層,隔絕SWNT與外界環境之接觸,接著在PDMS上濺鍍一層氧化銦錫(ITO)薄膜做為閘極之對電極,產生類金氧場效電晶體(MOSFET)效應,開發新型紅外線感測器,而感測元件之電阻可藉由微流道之尺寸以及奈米碳管之沈積量精確控制。光電流量測結果驗證本研究所提之紅外線感測器確實可有效在常溫常壓、低光源強度(17 W/cm2)以及低外加電壓(VDS = 0.01V) 下感測紅外光,在-0.2V閘極偏壓下感測元件之開關紅外線電導變化為2.11 %,其光反應時間可達0.5sec。

In this research, a metal oxide semiconductor field effect transistor (MOSFET) like infrared (IR) sensing method is presented. The orderly uneven barrier-layer surface of an anodic aluminum oxide (AAO) membrane was used as a substrate. The thickness of the barrier-layer was reduced by phosphoric acid etching. Following, a microchannel was transferred to the barrier-layer by photolithographic process. Single wall carbon nanotubes (SWNTs) were deposited into the microchannel as sensing element. A gold thin film that served as the gate electrode was sputtered on the opposite side of the barrier-layer of the AAO substrate. A thin layer of polydimethylsiloxane (PDMS) was then casted on the SWNTs to insulate the SWNTs from the surrounding ambiance. A thin film of indium tin oxide (ITO) was sputtered on the PDMS layer as the counter electrode of the gate electrode. The conductance of the sensing element could be precisely controlled by the width of the microchannel and the amount of the deposited SWNTs. Experiments demonstrated that the proposed MOSFET like IR sensor could effectively sense IR signal in the air at room temperature under a very weak power intensity (17 W/cm2) of IR illumination and an 0.01 V applied drain-source voltage. A 0.5 sec photocurrent response and a 2.11 % of conductivity increasing of the sensing element were measured, respectively.
URI: http://hdl.handle.net/11455/2355
其他識別: U0005-2207200918551500
Appears in Collections:機械工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.