Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/23565
DC FieldValueLanguage
dc.contributor顏宏真zh_TW
dc.contributorHung-Chen Yenen_US
dc.contributor陳宜民zh_TW
dc.contributor張邦彥zh_TW
dc.contributor詹迺立zh_TW
dc.contributorYi-Ming Arthur Chenen_US
dc.contributorNei-Li Chanen_US
dc.contributor.advisor賴美津zh_TW
dc.contributor.advisorMei-Chin Laien_US
dc.contributor.author賴姝蓉zh_TW
dc.contributor.authorLai, Shu-Jungen_US
dc.contributor.other中興大學zh_TW
dc.date2012zh_TW
dc.date.accessioned2014-06-06T07:20:41Z-
dc.date.available2014-06-06T07:20:41Z-
dc.identifierU0005-0111201114231300zh_TW
dc.identifier.citation1. 丁俊彥。2011。極端高鹽太古生物之分類鍵定、比較基因體分析及其生物科技應用潛力之研究。國立中興大學生命科學研究所博士論文。 2. 林芸。2008。高鹽太古生物在溫度、鹽及氧氣逆境下化學伴護因子對分子伴護蛋白基因表現的影響。國立中興大學生命科學研究所碩士論文。 3. 林德昇。2011。甜菜鹼生合成酵素Glycine Sarcosine Methyltransferase與Sarcosine Dimethylglycine Methyltransferase之晶體結構解析。國立中興大學生物化學研究所博士班資格考核書面資料。 4. 李宇堅。2004。嗜鹽性甲烷古生菌相容質甜菜鹼生合成酵素sarcosine, dimethylglycine N-methyltransferase的純化及活性分析。國立中興大學生命科學研究所碩士論文。 5. 柯宗佑。2009。高鹽甲烷太古生物ClpB蛋白之特性分析。國立中興大學生命科學研究所碩士論文。 6. 陳宇萱。2009。嗜鹽甲烷古生菌之相容質甜菜鹼生合成酵素於阿拉伯芥中表現的情形及基因轉殖株之鹽耐受程度的探討。國立中興大學生命科學系學士論文。 7. 陳聖中。2004。甲烷太古生物之分類鑑定與其相容質甜菜鹼運輸系統的特性分析。國立中興大學生命科學研究所博士論文資格考核提案。 8. 陳聖中。2005。甲烷太古生物之分類鑑定與其相容質甜菜鹼運輸系統的特性分析。國立中興大學生命科學研究所博士論文。 9. 陳詩雅。2006。嗜鹽性甲烷古生菌相容質甜菜鹼生合成酵素sarcosine, dimethylglycine N-methyltransferase的純化及特性探討。國立中興大學生命科學研究所碩士論文。 10. 楊道任。1995。嗜鹽性甲烷古生菌相容質glycine betaine的合成相關酵素及其影響因子之研究。國立中興大學植物研究所碩士論文。 11. 劉沐森。2011。以X-射線晶體學探討嗜鹽性甲烷古生菌Methanohalophilus portucalensis甘胺酸肌胺酸甲基轉移酶之結構與功能。國立台灣大學醫學院生物化學暨分子生物學研究所碩士論文。 12. 蘇旭梅。2005。嗜鹽性甲烷太古生物相容質甜菜鹼自體生合成基因的選殖。國立中興大學生命科學研究所碩士論文。 13. Asha, H. and J. Gowrishankar. 1993. Regulation of kdp operon expression in Escherichia coli: evidence against turgor as signal for transcriptional control. J. Bacteriol. 175:4528-4537. 14. Auton, M. and D. W. Bolen. 2005. Predicting the energetic of osmolyte-induced protein folding/unfolding. Proc. Natl. Acad. Sci. USA. 102:15065-15068. 15. Balch, W. E., G. E. Fox, C. J. Magrum, C. R. Woese, and R. S. Wolfe. 1979. Methanogens: reevalutation of a unique biological group. Microbial. Rev. 43:260-296. 16. Baldwin, R. L. 1996. How Hofmeister interactions affect protein stability. Biophys J. 71:2056-2063. 17. Ballal A. B. Basu and S. K. Apte. 2007. The Kdp-ATPase system and its regulation. J. Biosci. 32:559-568. 18. Barrieu, F., F. Chaumont, and M. J. Chrispeels. 1998. High Expression of the Tonoplast Aquaporin ZmTIP1 in Epidermal and Conducting Tissues of Maize. Plant Physiol. 117:1153–1163. 19. Benga G. 2009. Water channel proteins (later called aquaporins) and relatives: past, present, and future. IUBMB Life. 61:112-133. 20. Boone, D. R., I. M. Mathrani, M.Y. Liu, J. A. G. F. Menaia, R. A. Mah and J. E. Boone. 1993. Isolation and characterization of Methanohalophilus portucalensis sp. nov. and DNA reassociation study of the genus Methanohalophilus. Int. J. Sys. Bact. 43:430-437. 21. Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the priniciple of protein-dye binding. Anal. Biochem. 72: 248-254. 22. Burgie, E. S. and H. M. Holden. 2008. Three-dimensional structure of DesVI from Streptomyces venezuelae: a sugar N, N-dimethyltransferase required for dTDP-desosamine biosynthesis. Biochem. 47:3982-3988. 23. Chen, S.-C. and M.-C. Lai. 2005. Betaine transporter of betaine synthesizing halophilic Methanoarchaeon. Gordon Research conference on Cellular Osmoregulation:Sensors, Transducers and Regulators. Newport, Rhode Island. 24. Chen, S.-Y., M.-C. Lai, S.-J. Lai and Y.-C. Lee. 2009. Characterization of osmolyte betaine synthesizing sarcosine dimethylglycine N-methyltransferase from Methanohalophilus portucalensis. Arch Microbiol. 191: 735-43. 25. Chen, T. H. H., and N. Murata. 2008. Glycinebetaine: an effective protectant against abiotic stress in plants. Trends Plant Sci. 13: 499-505. 26. Chomcynski, P. and N. Sacchi. 1987. Single step of RNA isolation by acid guanidium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162:156-159. 27. Choquet, G., N. Jehan, C. Pissavin, C. Blanco and M. Jebbar. 2005. OusB, a broad-specificity ABC-type transporter from Erwinia chrysanthemi, mediates uptake of glycine betaine and choline with a high affinity. Appli. Environ. Micro. 71: 3389-3398. 28. Ciulla, R. A., S. Burggraf, K. O. Stetter, and M. F. Roberts. 1994. Occurrence and role of di-myo-inositol-1,1′-phosphate in Methanococcus igneus. Appl. Environ. Microbiol. 60:3660-3664. 29. Clarke, S., 1993. Protein methylation. Curr. Opin. Cell Biol. 5:624-632. 30. Cook, R. J. and C. Wagner. 1984. Glycine N-methyltransferase is a folate binding protein of rat liver cytosol. Proc. Natl. Acad. Sci. USA. 81:3631-3634. 31. Cornell, K. A., M. K. Riscoe. 1998. Cloning and expression of Eshcerichia coli 5’-methylthioadenosine/S-adenosylhomocysteine nucleosidase: identification of the pfs gene product. Biochim. Biophys. Acta 1396:8-14. 32. Csonka, L. N. 1989. Physiological and genetic responses of bacteria to osmotic stress. Microbial. Rev. 53:121-147. 33. Culham, D. E., B. Lasby, A. G. Marangoni, J. L. Milner, B. A. Steer, R. W. V. Nues, and J. M. Wood. 1993. Isolation and Sequence of Escherichia coli Gene proP Reveals Unusual Structural Features of the Osmoregulatory Proline/Betaine Transporter, ProP. J. Mol. Biol. 229:268-276. 34. Delamarche, C., D. Thomas, J. P. Rolland, A. Froger, J. Gouranton, M. Svelto, P. Agre and G. Calamita. 1999. Visualization of AqpZ-mediated water permeability in Escherichia coli by cryoelectron microscopy. J. Bacteriol. 181:4193-4197. 35. Diamant, S., N. Eliahu, D. Rosenthal and P. Goloubinoff. 2001. Chemical chaperones regulate molecular chaperones in vitro and in cells under combined salt and heat stresses. J. Biol. Chem. 276:39586-39596. 36. Douce, R., J. Bourguignon, M. Neuburger and F. Rébeillé. 2001. The glycine decarboxylase system: a fascinating complex. Trends Plant Sci. 6: 167-176. 37. Epstein, W. and B. S. Kim. 1971. Potassium transport loci in Escherichia coli. J. Bacteriol. 108:639-644. 38. Falkenberg, P. and A. R. Strøm. 1990. Purification and characterization of osmoregulatory betaine aldehyde dehydrogenase of Escherichia coli. Biochem. Biophys. Acta. 1034:253-259. 39. Fauman, E. B., R. M. Blumenthal and X. Cheng. 1999. Structure and eolution of adomet-dependent methyltransferase. World Scientfic Publishing. 40. Fu, Z., Y. Hu, K. Konishi, Y. Takata, H. Ogawa, T. Gomi, M. Fujioka and F. Takusagawa. 1996. Crystal structure of glycine N-methyltransferase from at rat liver. Biochem. 35:11985-11993. 41. Galinski, E. A. and H. G. Truper. 1994. Microbial behavior in salt stress ecosystems. FEMS Microbial Rev. 15:95-108. 42. Galinski, E. A., H. P. Pfeiffer and H. G. Trüper. 1985. 1,4,5,6-tetrahydro-2-methyl- 4-pyrimidinecarboxylic acid: a novel cyclic amino acid from halophilic phototrophic bacterium Ectothiorhodosphira. Eur. J. Biochem. 149:135-139. 43. Garcia-Estepa, R., M. Argandona, M. Reina-Bueno, N. Capote, F. Iglesias-Guerra, J. J. Nieto, C. Vargas. 2006. The ectD gene, which is involved in the synthesis of the compatible solute hydroxyectoine, is essential for thermoprotection of the halophilic bacterium Chromohalobacter salexigens. J. Bacteriol. 188:3774-3784. 44. Hagemann, M. 2011. Molecular biology of cyanobacterial salt acclimation. FEMS Microbiol Rev. 35:87-123 45. Hanson, A. D. and D. Rhodes. 1983. 14C tracer evidence for synthesis of choline and betaine via phosphoryl base intermediates in salinized sugarbeet leaves. Plant Physiol. 71:692-700. 46. Hibino, T., R. Waditee, E. Araki, H. Ishikawa, K. Aoki, Y. Tanaka, and T. Takabe. 2002. Functional characterization of choline monooxygenase, an enzyme for betaine synthesis in plants. J Bio Chem. 277: 41352-41360. 47. Hickey, A. J., E. C. de Macario, E. Conway and A. J. L. Macario. 2002. Transcription in the Archaea: Basel factors, regulation, and stress-gene expression. Cri. Rev. Biochem. Mol. Biol. 37:537-599. 48. Huang, Y. F., J. Komoto, K. Konishi, Y. Takata, H. Ogawa, T. Gomi, M. Fujioka and F. Takusagawa. 2000. Mechanism for auto-inhibition and forced product release in glycine N-methyltransferase: crystal structures of wild-type, Mutant R175K and S-adenosylhomocystein-bound R175K enzymes. J. Mol. Biol. 298:149-162. 49. Hung, C.-C. and M.-C. Lai. 2008. Osmolyte Nε-acetyl-β lysine biosynthetic genes from methanogenic Archaea. I-099. In abstracts of the 108th general meeting of the society of microbiology. American Society for Microbiology, Boston. 50. Hungate, R. E. 1969. A roll tube method for cultivation of strict anaerobes, p117-132. In J. R. Norris and D. W. Ribbons (ed.) Method in microbiology, vol 3B. Academic press Inc., New York, NY. 51. Ignatova, Z., and L. M. Gierasch. 2006. Inhibition of protein aggregation in vitro and in vivo by a natural osmoprotectant. Proc. Natl. Acad. Sci. USA. 103:13357-13361. 52. Jarrell, K. F., D. Faguy, A. M. Hebert, and M. A. Kalmokoff. 1992. A general method of isolating high molecular weight DNA from methanogenic archaea (archaebacteria). Can. J. Microbiol. 38:65-68. 53. Jarrell, K. F., G. D. Sprott and A. T. Matheson. 1984. Intracellular potassium concentration and relative acidity of ribosomal proteins of methanogenic bacteria. Can. J. Microbiol. 30:663-668. 54. Javor, B. 1989. Hypersaline environments: microbiology and biogeochemistry, p101-124. Springer-Verlag, New York. 55. Jones, P. A., D. Takai. 2001. The role of DNA methylation in mammalian epigenetics. Science. 293:1068-1070. 56. Kempf, B. and E. Bremer. 1998. Uptake and synthesis of compatible solutes as microbial stress responses to high-osmolality environment. Arch. Microbiol. 170:319-330. 57. Kimura, Y., S. Kawasaki, H. Yoshimoto and K. Takegawa. 2010. Glycine betaine biosynthesized from glycine provides an osmolyte for cell growth and spore germination during osmotic stress in Myxococcus xanthus. J. Bacteriol. 192: 1467-1470. 58. Kozono, D., X. Ding, I. Iwasaki, X. Meng, Y. Kamagata, P. Agre and Y. Kitagawa. 2003. Functional expression and characterization of an Archaea aquaporin. J. Biol. Chem. 278:10649-10656. 59. Kuhlmann, A. U., E. Bremer. 2002. Osmotically regulated synthesis of the compatible solute ectoine in Bacillus pasteurii and related Bacillus sp. Appl. Environ. Microbiol. 68:772-783. 60. Kumar, S, K. Tamura and M. Nei. 2004. MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform. 5: 150-163. 61. Kunz, W., J. Henlen and B. W. Ninham. 2004. About the science of the effect of salts: Franz Hofmeister’s historical pspers. Curr. Opin. Coll. Interface. Sci. 9: 19-37. 62. Laemmli, U.K. 1970. Cleavage of structural proteins during assembly of the head of bacteriophage T4. Nature. 227:680-685. 63. Lai, M.-C. C.-C Wang, M.-J Chuang, Y.-C Wu, Y.-C Lee. 2006. Effects of substrate and potassium on the betaine-synthesizing enzyme glycine sarcosine dimethylglycine N-methyltransferase from a halophilic methanoarchaeon Methanohalophilus portucalensis. Res. Microbiol. 157:948-955. 64. Lai, M.-C., C.-M. Shu, M.-S. Chiou, T.-Y. Hong, M.-J. Chuang and J. J. Hua. 1999a. Characterization of Methanosarcina mazei N2M9705 Isolated from an Aquaculture Fishpond. Curr. Microbiol. 39:79-84. 65. Lai, M.-C. and D. R. Yang. 1995. Osmoregulation of Methanohalophilus: de novo biosynthesis of glycine betaine and its regulatory factors: Abstract of Beijerinck Centennial. Microbial physiology and gene regulation: Emerging principles and application. The Hauge, The Netherlands. 66. Lai, M.-C., D.-R. Yang and M.-J. Chuang. 1999b. Regulatory Factors Associated with Synthesis of the Osmolyte Glycine Betaine in the Halophilic Methanoarchaeon Methanohalophilus portucalensis. Appl. Envi. Microbiol. 65:828-833. 67. Lai, M.-C., K. R. Sowers, D. E. Robertson, M. F. Roberts, and R. P. Gunsalus. 1991. Distribution of compatible solutes in the halophilic methanogenic archaebacteria. J. Bacteriol. 173:5352-5358. 68. Lai, M.-C. and R. P. Gunsalus. 1992. Glycine betaine and potassium ion are the major compatible solutes in the extremely halophilic methanogen Methanohalophilus strain Z7302. J. Bacteriol. 174:7474-7477. 69. Lai, M.-C. and S.-C. Chen. 2001. Methanofollis aquaemaris sp. nov., a methanogen isolated from an aquaculture fish pond. Int. J. Syst. Evol. Microbiol. 51: 1873-1880. 70. Lai, M.-C., T.-Y. Hong and R. P. Gunsalus. 2000. Glycine betaine transport in theobligate Halophilic Archaeon, Methanohalophilus portucalensis. J. Bacteriol. 182: 5020-5024. 71. Landfald, B. and A. R. Strom. 1986. Choline-glycine betaine pathway confers a high level of osmotic tolerance in Escherichia coli. J. Bacteriol. 165:849-855. 72. Le Rudulier, D., A. R. Strom, A. M. Dandekar, L. T. Smith and R. C. Valentine. 1984. Molecular biology of osmoregulation. Science. 224: 1064-1064. 73. Liu, Y., D. R. Boone and C. Choy. 1990. Methanohalophilus oregonense sp. Nov., a methylotrophic methanogen from an alkaline, saline aquifer. Int. J. Syst. Bacteriol. 40:111-116. 74. Lu, W., B. Zhao, D. Feng, S. Yang. 2004. Cloning and characterization of the Halobacillus trueperi betH gene, encoding the transport system for the compatible solute glycine betaine. FEMS Microbiol. Lett. 235:393-399. 75. Lu, W. D., Z. M. Chi and C. D. Su. 2006. Indentification of glycine betaine as compatible solute in Synechococcus sp. WH8102 and characterizeation of its N-methyltransferase genes involved in betaine synthesis. Arch. Microbiol. 186:495-506. 76. Martienssen, R. A., V. Colot. 2001. DNA methylation and epigenetic inheritance in plants and filamentous fungi. Science. 293:1070-1074. 77. Martin, D. D., R. A. Ciulla, and M. F. Roberts. 1999. Osmoadaptation in Archaea. Appl. Envi. Microbiol. 65:1815-1825. 78. Martin, J. L. and F. M. McMillan. 2002. SAM (dependent) i am: the S-adenosyl-methionine-dependent methyltransferase fold. Curr. Opin. Struc. Bio. 12:783-793. 79. Mathrani, I. M., and D. R. Boone. 1985. Isolation and characterization of a moderately halophilic methanogen from a solar saltern. Appl. Environ. Microbiol. 50:140-143. 80. Mathrani, I. M., D. R. Boone and R. A. Mah. 1988. Isolation and characterization of halophilic methanogen and DNA/DNA homology studies of 12 halophilic methanogens. I-23, p184. Abstract 88th annumciate Meeting American Society Microbiology. 81. McCoy, J. G., L. J. Bailey, Y. H. Ng, C. A. Bingman, R. Wrobel, A. P. M. Weber, B. G. Fox and G. N. Phillips Jr. 2009. Discovery of sarcosine dimethylglycine methyltransferase from Galdieria sulphuraria. Pro. Struct. Funct. Bioinfo. 74(2):368-377.. 82. Müller, S., T. Hoffmann, H. Santos, S. H. Saum, E. Bremer and V. Müller. 2011. Bacterial abl-like genes: production of the archaeal osmolyte Nε-acetyl-β-lysine by homologous overexpression of the yodP-kamA genes in Bacillus subtilis. Appl Microbiol Biotechnol. 91:689-697. 83. Müller, V., R. Spanheimer and H. Santos. 2005. Stress response by solute accumulation in archaea. Curr. Opin. Microbiol. 8:729-736. 84. Nyyssölä, A., J. Kerovuo, P. Kaukinen, N. von Weymarn and T. Reinikainen. 2000. Extreme Halophiles Synthesize Betaine from Glycine by methylation. J. Biol. Chem. 275:22196-22201. 85. Nyyssölä, A., T. Reinikainen, and M. Leisola. 2001. Characterization of Glycine Sarcsine N-Methyltransferase and Sarcosine Dimethylglycine N-Methyl- transferase. Appl. Environ. Microbiol. 67:2044-2050. 86. Ogawa, H., T. Gomi, F. Takusagawa, and M. Fujioka. 1998. Structure, function and physiological role of glycine N-methyltransferase. Biochem. Cell Biol. 30:13-26. 87. Omer, A. D., T. M. Lowe, A. G. Russell, H. Ebhardt, S. R. Eddy and P. P. Dennis. 2000. Homologs of small nucleolar RNAs in Archaea. Science 288:517-522. 88. Paterek, J. R., and P. H. Smith. 1988. Methanohalophilus mahii gen. nov., a methylotrophic halophilic methanogen. Int. J. Bacteriol. 38:122-123. 89. Paul, S., S. Punam and T. K. Chaudhuri. 2007. Chaperone-assisted refolding of Escherichia coli maltodextrin glucosidase. FEBS J. 274:6000-6010. 90. Perczel, A. and G. D. Fasman. 1992. Quantitative analysis of cyclic β-turn models. Protein science. 1: 378-395. 91. Peters, P., E. A. Galinski, H. G. Trüper. 1990. The biosynthesis of ectoine. FEMS Microbiol. Lett. 71:157-162. 92. Pollard, A. and R. G. Wyn Jones. 1979. Enzyme activities in concentrated solutions of glycine betaine and other solutes. Planta. 144:291-298. 93. Rhoads, D. B., F. B. Waters and W. Epstein. 1976. Cation transport in Escherichia coli. VIII. Potassium transport mutants. J. Gen. Physiol. 67:325-341. 94. Rhodes, D and Hanson AD. 1993. Quaternary ammonium and tertiary sulfonium compounds in higher-plants. Ann Rev Plant Physiol Plant Mol Biol. 44: 357-384. 95. Roberts, M. F., M.-C. Lai and R. P. Gunsalus. 1992. Biosynthetic pathways of the osmolytes N-acetyl-beta-lysine, beta-glutamine, and glycine betaine in Methanohalophilus strain FDF1 suggested by Nuclear Maganetic Resonance Analyses. J. Bacteriol. 174:6688-6693. 96. Roberts, M. F. 2000. Osmoadaptation and osmoregulation in archaea. Front Biosci. 5:796-812. 97. Roberts, M. F. 2004. Osmoadaptation and osmoregulation in archaea: update 2004. Front Biosci. 9:1999-2019. 98. Roberts, M. F. 2005. Organic compatible solutes of halotolerant and halophilic microorganisms. Saline Systems. Doi: 10.1186/1746-1448-1-5. 99. Robertson, D. E. and M. F. Roberts. 1991. Organic osmolytes in methanogenic archaebacteria. BioFactors. 3:1-9. 100. Robertson, D. E., M.-C. Lai, R. P. Gunsalus and M. F. Roberts. 1992a. Composition, variation and dynamics of major osmotic solutes in Methanohalophilus strain FDF1. Appl. Environ. Microbiol. 58:2438-2443. 101. Robertson, D. E., D. Noll and M. F. Roberts. 1992b. Free amino acid dynamics in marine methanogens. J. Biol. Chem. 267:14893-14901. 102. Roeβler, M., K. Pflüger, H. Flach, T. Lienard, G. Gottschalk and V. Müller. 2002. Identification of a salt-induced primary transporter for glycine betaine in the methanogen Methanosarcina mazei Gö1. Appl. Environ. Microbiol. 68:2133-2139. 103. Sambrook, J. and D. W. Russell. 2001. Preparation and transformation of competent E. coli using calcium chloride, page 1.117-1.118. In Molecular cloning: a laboratory manual, third edition. Cold Spring Harbor Laboratory press. Cold Spring Harbor, NY. 104. Sambrook, J., E. F. Fritsch and T. Maniatis. 1989. Molecular cloning: A laboratory Mannual, 2nd edition, Cold Spring Laboratory. Cold Spring Harbor, New York. 105. Samuel, D., T. K. Kumar, G. Ganesh, G. Jayaraman, P. W. Yang, M. M. Chang, V. D. Trivedi, S. L. Wang, K. C. Hwang, D. K. Chang and C. Yu. 2000. Proline inhibits aggregation during protein refolding. Protein Sci. 9:344-352. 106. Santoro, M. M., Y. Liu, S. M. A. Khan, L. X. Hou and D. W. Bolen. 1992. Increase thermal stability of proteins in the presence of naturally occurring osmolytes. Biochem. 31:5278-5283. 107. Saum, R., A. Mingote, H. Santos and V. Müller. 2009. Genetic analysis of the role of the ABC transporter Ota and Otb in glycine betaine transport in Methanosarcina mazei Gö1. Arch Microbiol. 191:291-301. 108. Saum, S. H. and V. Müller. 2008. Growth phase-dependent switch in osmolyte strategy in a moderate halophile: ectoine is a minor osmolyte but major stationary phase solute in Halobacillus halophilus. Environ Microbiol. 10:716-126. 109. Schmidt, S., K. Pflüger, S. Kögl, R. Spanheimer and V. Müller. 2007. The salt-induced ABC transporter Ota of the methanogenic archaeon Methanosarcina mazei Gö1 is a glycine betaine transporter. FEMS Microbiol Lett. 277:44-49. 110. Schubert, H. L., R. M. Blumenthal and X. Cheng. 2003. Many paths to methyltransfer: a chronicle of convergence. TRENDS Biochem. Sci. 28:329-335. 111. Shih, C. J. 2007. Identification and analysis the salt stress related genes and molecular chaperone system in Methanohalophilus portucalensis. Ph.D. Dissertation. National Chung Hsing University, Taichung, Taiwan. 112. Shih, C. J. and M. C. Lai. 2007. Analysis of the AAA+ chaperone clpB gene and stress-response expression in the halophilic methanogenic archaeon Methanohalophilus portucalensis. Microbiol. 153:2572-2583. 113. Sleator, R. D., and C. Hill. 2001. Bacterial Osmoadaption: the Role of Osmolytes in Bacterial Stress and Virulence. FEMS Microbiol. Rev. 26:49-71. 114. Smith, L. T. 1996. Role of osmolytes in adaptation of osmotically stressed and chill-stressed Listeria monocytogens grown in liquid media and on processed meat surfaces. Appl. Environ. Microbiol. 55:1565-1569. 115. Sowers, K.R. 1995. Techniques for monitoring methanogen cell growth, in: K.R. Sowers, H.T. Schreier (Eds.), Archaea: A Laboratory Manual, vol. 2, Methanogens, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp.89-95. 116. Sowers, K. and R. P. Gunsalus. 1995. Halotolerance in Methanosarcina spp.: Role of N-acetyl-beta-lysine, alfa-glutamate, glycine betaine and K+ as compatible solutes for osmotic adaptation. Appl. Environ. Microbiol. 61:4382-4388 117. Sowers, K. R., D. E. Robertson, D. Noll, R. P. Gunsalus and M. F. Roberts. 1990. N-acetyl-beta-lysine: an osmolyte synthesized by methanogenic archaebacteria. Proc. Natl. Acad. Sci. USA. 87:9083-9087. 118. Street, T. O., D. W. Bolen, and G. D. Rose. 2006. A molecular mechanism for osmolyte-induced protein stability. Proc. Natl. Acad. Sci. USA. 103:13997-14002. 119. Su J., R. Hirji, L. Zhang, C.K. He, G. Selvaraj., and R. Wu. 2006. Evaluation of the stress-inducible production of choline oxidase in transgenic rice as a strategy for producing the stress-protectant glycine betaine. J Exp Bot. 57:1129-1135. 120. Suhr, S. T., R. Ramachandran, C. L. Fuller, M. B. Beldman, C. A. Byrd. and D. Goldman. 2009. Highly-restricted, cell-specific expression of the simian CMV-IE promoter in transgenic zebrafish with age and after heat shock. Gene Expr. Patterns. 9: 54-64. 121. Tatzelt, J., S. B. Prusiner and W. J. Welch. 1996. Chemical chaperones interfere with the formation of scrapie prion protein. EMBO J. 15:6363-6373. 122. Thompson, J.D., D.G. Higgins and T.J. Gibson. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680. 123. Van der Heide, T. and B. Poolman. 2000a. Glycine betaine transporter in Lactococcus lactis is osmotically regulated at the level of expression and translocation activity. J. Bacteriol. 182:203-206. 124. Van der Heide, T. and B. Poolman. 2000b. Osmoregulated ABC-transport system of Lactococcus lactis sense water stress via changes in the physical state of the membrane. PNAS 97:7102-7106. 125. Waditee, R., N. H. Bhuiyan, V. Rai, K. Aoli, Y. Tanaka, T. Hibino, S. Suzuki, A. T. Jagendorf, T. Takabe, and T. Takabe. 2005. Gene for direct methylation of glycine provide high levels of glycinebetaine and abiotic-stress tolerance in Synechococcus and Arabidopsis. Proc. Natl. Acad. Sci. USA. 102:1318-1323. 126. Waditee, R., Y. Tanaka, K. Aoki, T. Hibino, H. Jikuya, J. Takano, T. Takabe, and T. Takabe. 2003. Isolation and functional characterization of N-Methyltransferase that catalyze betaine synthesis from glycine in a halotolerant photosynthetic organism Aphanothece halophytica. J. Biol. Chem. 278:4932-4942. 127. Westerfield, M. 2000. The zebrafish book. A guide for the laboratory use of zebrafish (Danio rerio). 4th ed., Univ. of Oregon Press, Eugene. 128. Wilharm, T., T. N. Zhilina and P. Hummel. 1991. DNA-DNA hybridization of methylotrophic halophilic methanogenic bacteria and transfer of Methanococcus halophilusvp to the genus Methanohalophilus as Methanohalophilus halophilus comb. Nov. Int. J. Syst. Bacteriol. 46:558-562.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/23565-
dc.description.abstract高鹽甲烷太古生物Methanohalophilus portucalensis FDF1T為目前已知可由glycine三次甲基化反應,依序生合成sarcosine、dimethylglycine及甜菜鹼的六種微生物之一。由M. portucalensis FDF1T細胞粗萃取液分別純化出低催化效率的glycine sarcosine dimethylglycine N-methyltransferase (GSDMT)及高催化效率的sarcosine dimethylglycine N-methyltransferase (SDMT)兩套甜菜鹼自體生合成系統,顯示glycine sarcosine N-methyltransferase (GSMT)與SDMT扮演主要甲基化glycine生合成甜菜鹼之角色。本研究成功獲得完整的Mpgsmt-sdmt基因組序列,並以異源表現蛋白並測試其in vitro活性。以北方墨漬法證實gsmt-sdmt受到溫度及鹽逆境誘導其基因相對轉錄量。相較於其他高鹽細菌或藍綠菌之GSMT蛋白,MpGSMT具有受鉀離子及鈉離子濃度正向調控之特性,由MpGSMT蛋白之二級與四級結構分析證實,MpGSMT蛋白會隨著鉀離子濃度增加,逐漸形成二聚體蛋白,且提高其和受質glycine及sarcosine之親合性。不同於MpSDMT及其他高鹽細菌之GSMT/SDMT蛋白,MpGSMT之甲基化活性顯著受到鉀離子及鈉離子之正向調控,且顯著受到終產物甜菜鹼的負向調控,顯示MpGSMT蛋白於高鹽甲烷太古生物適應高鹽環境時,連結salt in與相容質累積兩種滲透壓調控機制,並由累積的高濃度甜菜鹼關閉glycine methyltransferase (GMT)活性以精確的調控胞內能量的有效利用。點突變實驗結果推測GSMT之Arg167為受質glycine或sarcosine結合的位置,SDMT之Gly79、His146及Pro172可能與基質結合位置有關,而Tyr16及Asp142於結構上能穩定甲基轉移過程中SN2機制之過渡時期。由異源共表現MpGSMT及MpSDMT於E. coli中其具有in vivo甜菜鹼累積,並提升大腸桿菌對高鹽逆境的耐受性。本研究進一步藉由農桿菌感染及顯微注射方式分別將Mpgsmt及Mpsdmt基因送入阿拉伯芥與斑馬魚中表現。比較野生型與基因轉殖阿拉伯芥於鹽逆境下生長狀況證實,異源表現MpGSMT及MpSDMT能提升轉殖株於高鹽逆境之存活率。由基因轉殖斑馬魚證實異源表現之MpGSMT及MpSDMT蛋白確實具有蛋白活性,此為目前為止成功於斑馬魚中異源表現高鹽甲烷太古生物之甜菜鹼自體生合成酵素之首例。由以上結果推測異源共表現MpGSMT及MpSDMT蛋白可以提升其它經濟作物或動物於高滲透壓逆境下存活率之潛力。zh_TW
dc.description.abstractHalophilic methanoarchaeon Methanohalophilus portucalensis FDF1T is one of the six organisms that can de novo synthesize betaine through three steps of methylation from glycine. There are two betaine de novo synthesizing systems- GSDMT and SDMT- purified from M. portucalensis FDF1T with low and high catalytic efficiency respectively. This implies that GSMT_SDMT system possesses the major role to synthesize betaine. In this study, the complete gene cluster of Mpgsmt-sdmt were obtained and heterologous expressed for in vitro activity assays. The transcription levels of Mpgsmt-sdmt were induced by temperature and salt stresses which were verified by Northern hybridization. In contrast with GSMT from other halophilic bacteria or cyanobacteria, MpGSMT have unique characteristics of dramatic up regulation by potassium and sodium concentrations. The secondary and quaternary structure analyses of MpGSMT showed the dimer formation as increased potassium level that caused the substrate glycine and sarcosine binding affinity improved. The dramatic activating effects of sodium and potassium ions on the glycine and sarcosine methyltransferase activities of MpGSMT, but not MpSDMT and bacterial GSMT/SDMT, and the strong end product betaine inhibitory effect on MpGSMT suggested it is a key player in osmoregulation. Moreover, this osmoregulatory mechanism of halophilic methanogen is couple with the salt-in and osmolyte osmoadaptative strategies. For MpGSMT, Arg167 is the direct substrate binding residue with site-directed mutation evidence. For MpSDMT, Gly79, His146 and Pro172 are related to substrate binding while Tyr16 and Asp142 stabilized the SN2 reaction in methyltransfer process. Heterologous expressed MpGSMT/SDMT in E. coli could accumulate betaine and overcome high salt stress. In this study, the Mpgsmt and Mpsdmt genes were transformed into Arabidopsis and zebrafish via Agrobacterium-mediated transformation and microinjection respectively. Morphological comparison of wild-type and transgenic Arabidopsis seedlings suggested that heterologous expressed MpGSMT and MpSDMT could improve the viability of transgenic Arabidopsis under salt stress. In transgenic zebrafish study, this is the first report that demonstrates heterologous expression of betaine de novo synthesizing enzymes in zebrafish. This study suggested that co-expressed MpGSMT and MpSDMT are feasible of application in crops or animals to improve the viability under osmotic stress.en_US
dc.description.tableofcontents摘要.............................................................................................................................III Abstract........................................................................................................................IV 目錄..............................................................................................................................V 表目錄...........................................................................................................................X 圖目錄.........................................................................................................................XI 壹、前言..........................................................................................................................1 貳、前人研究.................................................................................................................3 一、滲透壓調節.........................................................................................................3 1. 滲透壓調節反應...............................................................................................3 2. 相容質的種類與特性.......................................................................................4 3. 相容質累積.......................................................................................................4 二、高鹽甲烷太古生物之相容質............................................................................5 三、相容質甜菜鹼的功能........................................................................................6 四、甜菜鹼的生合成途徑.........................................................................................7 五、相容質甜菜鹼之自體生合成酵素....................................................................8 1. 高鹽甲烷太古生物的相容質甜菜鹼之自體生合成酵素...............................8 2. 嗜鹽異營菌Actinopolyspora halophila之甜菜鹼自體生合成酵素...............9 3. 嗜鹽嗜鹼光合硫化菌Halorhodospira halochloris之甜菜鹼自體生合成 酵素....................................................................................................................9 4. 耐鹽藍綠菌Aphanothece halophytica之甜菜鹼自體生合成酵素...............10 5. 海洋型藍綠菌Synechococcus sp. WH8102之甜菜鹼自體生合成酵素......11 六、S-adenosylmethionine (SAM)依賴型甲基轉移酶的結構特色與功能...........11 七、影響相容質甜菜鹼自體生合成累積的因子...................................................14 鹽濃度的影響......................................................................................................14 甜菜鹼濃度的影響..............................................................................................15 受質glycine濃度的影響.....................................................................................15 SAM與SAH濃度的影響...................................................................................15 八、相容質甜菜鹼自體生合成酵素在增進生物對極端環境適應的應用潛力...16 参、材料與方法...........................................................................................................19 一、使用菌株與載體...............................................................................................19 二、甲烷太古生物培養基組成...............................................................................19 1. 除氧操作系統 (Hungate station)...................................................................19 2. 12 % NaCl H-P medium...................................................................................19 三、大腸桿菌培養基LB medium組成.................................................................19 四、高鹽甲烷太古生物接種、菌體培養及保存...................................................19 1. 厭氧接種及菌體培養與保存.........................................................................19 2. 菌體生長曲線的測定.....................................................................................20 五、萃取甲烷太古生物染色體DNA....................................................................20 六、聚合酶連鎖反應 (Polymerase chain reaction, PCR).....................................21 1. 引子設計.........................................................................................................21 2. 聚合酶連鎖反應.............................................................................................21 七、PCR產物純化...................................................................................................21 八、DNA接合反應..................................................................................................22 1. pGEM-T Easy Vector System (Promega).........................................................22 2. 其他非商業化載體.........................................................................................22 九、勝任細胞製備及轉型作用...............................................................................22 十、萃取質體DNA.................................................................................................23 十一、核酸定序.......................................................................................................24 十二、探針製備.......................................................................................................25 十三、南方墨漬法...................................................................................................26 1. 限制酶切割.....................................................................................................26 2. 洋菜膠體電泳.................................................................................................26 3. DNA轉漬.........................................................................................................26 4. 雜合反應.........................................................................................................27 5. DNA片段回收與純化.....................................................................................27 6. Dot blotting確認純化樣品..............................................................................28 十四、菌落雜合篩選(colony hybridization)...........................................................28 十五、反轉錄聚合酶鏈鎖反應 (Reverse-Transcription Polymerase Chain Reaction)......................................................................................................28 1. 萃取RNA........................................................................................................29 2. 反轉錄聚合酶鏈鎖反應.................................................................................29 十六、北方墨漬法...................................................................................................30 1. RNA電泳分析.................................................................................................30 2. RNA樣品轉漬反應.........................................................................................30 3. 雜合反應.........................................................................................................31 4. 計算基因相對轉錄量(relative transcription level)........................................31 十七、於大腸桿菌E. coli中異源表現之載體構築..............................................31 1. 蛋白質大量表現的載體構築.........................................................................31 2. 互補實驗及蛋白質in vivo活性分析之載體構築.........................................32 十八、蛋白質表現與純化.......................................................................................32 1. 大量表現MpGSMT與MpSDMT..................................................................32 2. 全細胞蛋白質之製備.....................................................................................33 3. 蛋白質定量.....................................................................................................33 4. Ni SepharoseTM 6 Fast Flow resin親和性管柱...............................................33 十九、蛋白質溶液的濃縮......................................................................................34 二十、蛋白質的保存..............................................................................................34 二十一、蛋白質電泳................................................................................................34 1. SDS-PAGE.......................................................................................................34 2. 銀染色法 (Silver stain)..................................................................................35 二十二、甲基轉移酶活性分析...............................................................................35 二十三、以圓二色光譜儀(Circular Dichroism spectroscopy)分析蛋白二級結構 ..................................................................................................................36 二十四、以分析型超高速離心分析GSMT之四級結構......................................36 二十五、GSMT與SDMT基質結合位點突變(site direct mutation).....................37 二十六、In vivo活性測試.......................................................................................38 1. 胞內溶質萃取.................................................................................................38 2. 以薄層色層分析法分析胞內溶質萃取液.....................................................38 二十七、異源表現MpGSMT及MpSDMT於E. coli MKH13之生長曲線測試 ..................................................................................................................39 二十八、基因轉殖Mpgsmt及Mpsdmt至阿拉伯芥.............................................40 1. Agrobacterium tumefaciens strain LBA4404 and strain GV3101....................40 2. Binary vector pBI121.......................................................................................40 3. 製備Agrobacterium tumefaciens之勝任細胞...............................................40 4. 電穿孔 (electroporation)................................................................................41 5. 以Colony PCR確認pBI121-Mpgsmt或pBI121-Mpsdmt...........................41 6. 植株 (Arabidopsis thaliana) 及其培養環境.................................................41 7. 以農桿菌藉浸染法 (floral dip method)感染阿拉伯芥................................41 8. 阿拉伯芥種子篩選.........................................................................................42 9. 確認轉殖阿拉伯芥之基因轉錄.....................................................................42 10. GUS染色.......................................................................................................43 11. 植株雜交.......................................................................................................43 12. 逆境測試.......................................................................................................44 a. 鹽逆境下根系生長測試.............................................................................44 b. 鹽逆境下葉部光系統II之最大光化學效率測試(quantum efficiency of photosystem II photochemistry).................................................................44 c. 乾燥逆境下葉部光系統II之最大光化學效率測試.................................45 二十九、基因轉殖Mpgsmt及Mpsdmt至斑馬魚..................................................45 1. 構築pCS2-Mpgsmt -GFPXLT及pCS2-Mpsdmt -GFPXLT...............................45 2. 製備顯微注射針.............................................................................................45 3. 收集斑馬魚受精卵及顯微注射前置作業.....................................................45 4. 顯微注射(Microinjection)..............................................................................46 5. 螢光顯微鏡觀察轉殖魚之綠螢光蛋白(GFP)表現.......................................46 6. 斑馬魚全細胞萃取液的製備.........................................................................47 7. GSMT_GFP及SDMT_GFP蛋白表現確認..................................................47 三十、生物資訊分析................................................................................................48 肆、結果.......................................................................................................................50 一、高鹽甲烷太古生物M. portucalensis FDF1T的相容質甜菜鹼生合成基因組 ..........................................................................................................................50 1. Mpgsmt-sdmt基因序列分析............................................................................50 2. GSMT與SDMT/DMT的親源演化關係探討................................................51 二、M. portucalensis FDF1T之S-adenosylhomocysteine hydrolase (Mpsahh)全長 基因之選殖..........................................................................................................51 三、Mpgsmt-sdmt為同一個轉錄單元....................................................................52 四、不同逆境處理對Mpgsmt-sdmt及Mpsahh基因轉錄之影響.........................53 1. 溫度逆境.........................................................................................................53 2. 鹽度逆境.........................................................................................................54 五、異源表現與純化MpGSMT與MpSDMT蛋白..............................................55 六、甲基轉移酶活性測試.......................................................................................56 1. MpGSMT酵素特性分析.................................................................................56 a. 最適反應時間.............................................................................................57 b.基質glycine及sarcosine的反應最適濃度.................................................57 c. 甲基提供者SAM的反應最適濃度...........................................................58 d. 鉀離子及鈉離子對GSMT蛋白活性的影響.............................................58 e. 終產物甜菜鹼對GSMT蛋白活性的影響.................................................59 f. 甲基轉移代謝反應產物SAH對GSMT活性的影響................................60 2. MpSDMT酵素特性分析.................................................................................60 a. 最適反應時間.............................................................................................60 b.基質sarcosine及dimethylglycine的最適反應濃度...................................61 c.甲基提供者SAM最適反應濃度.................................................................61 d. 鉀離子及鈉離子對SDMT蛋白活性的影響.............................................62 e. 終產物甜菜鹼對SDMT蛋白活性的影響.................................................63 f. 甲基轉移代謝反應產物SAH對SDMT活性的影響...............................63 七、以圓二色光譜儀分析MpGSMT及MpSDMT之二級結構..........................64 八、鉀離子對MpGSMT蛋白受質親合性的影響................................................65 九、MpGSMT蛋白四級結構分析.........................................................................65 十、針對GSMT及SDMT點突變分析可能的基質結合位置.............................66 十一、MpGSMT及MpSDMT之in vivo活性......................................................67 十二、Mpgsmt-sdmt基因轉殖E. coli MKH13對高鹽逆境抵禦能力測試.........68 十三、Mpgsmt與Mpsdmt基因轉殖阿拉伯芥對高鹽逆境之抵禦能力測試......69 1. 基因轉殖Mpgsmt與Mpsdmt至阿拉伯芥....................................................69 2. 篩選具Mpgsmt或Mpsdmt同型接合的轉殖植株.........................................69 3. 確認同型接合的Mpgsmt及Mpsdmt轉殖植株之基因表現........................70 4. 確認同型接合的Mpgsmt及Mpsdmt轉殖植株之蛋白表現.........................70 5. 同型接合的Mpgsmt及Mpsdmt轉殖植株之雜交.........................................70 6. 不同鹽逆境下植株根系生長測試.................................................................71 7. 高鹽逆境下植株光系統II之最大光化學效率測試.....................................72 8. 乾旱逆境下植株光系統II之最大光化學效率測試.....................................74 十四、Mpgsmt與Mpsdmt基因轉殖斑馬魚對高鹽逆境之抵禦能力測試...........74 1. 以顯微注射方式基因轉殖Mpgsmt與Mpsdmt至斑馬魚............................74 2. Mpgsmt及Mpsdmt轉殖魚表型及行為描述..................................................75 3. 轉殖魚之MpGSMT或MpSDMT蛋白表現確認.........................................75 4. 篩選具Mpgsmt及Mpsdmt同型接合的轉殖魚............................................76 伍、討論.......................................................................................................................77 一、 相容質甜菜鹼自體生合成基因比較分析.....................................................77 二、異源表現之GSMT及SDMT酵素特性分析.................................................78 三、鉀離子與鈉離子對GSMT及SDMT之影響.................................................79 四、終產物甜菜鹼對GSMT及SDMT之影響.....................................................79 五、MpGSMT及MpSDMT受質結合區之分析...................................................80 六、分析甜菜鹼自體生合成相關之基因套組.......................................................82 七、M. portucalensis FDF1T之逆境反應與甜菜鹼自體生合成反應之調控.......83 八、甜菜鹼自體生合成酵素應用於植物及動物的可能性...................................85 陸、結論與展望...........................................................................................................87 柒、表與圖...................................................................................................................89 捌、參考文獻.............................................................................................................149 玖、附錄.....................................................................................................................157 Appendix 1. Mpgsmt deposited in NCBI Nucleotide database..............................158 Appendix 2. Mpsdmt deposited in NCBI Nucleotide database..............................160 Appendix 3. Osmolyte in M. portucalensis FDF1T at optimal growth condition..162 Appendix 4. Analysis of negative charged surface of GSMT and SDMT/DMT...163zh_TW
dc.language.isoen_USzh_TW
dc.publisher生命科學系所zh_TW
dc.subjectmethanoarchaeonen_US
dc.subject甲烷太古生物zh_TW
dc.subjectosmolyte betaineen_US
dc.subjectapplication in salt and drought toleranceen_US
dc.subject相容質甜菜鹼zh_TW
dc.subject抗鹽抗旱應用zh_TW
dc.title高鹽甲烷太古生物之相容質甜菜鹼自體生合成酵素特性分析並探討其應用於模式生物阿拉伯芥與斑馬魚抗鹽抗旱的可行性zh_TW
dc.titleCharacterization of de novo betaine synthesizing methyltransferases from Methanohalophilus portucalensis FDF1T and application in salt and drought tolerance of Arabidopsis and Brachydanioen_US
dc.typeThesis and Dissertationzh_TW
item.languageiso639-1en_US-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.fulltextno fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Appears in Collections:生命科學系所
Show simple item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.