Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/23569
標題: 奧勒岡精油藉由凋亡蛋白酶的活化誘導人類非小細胞肺癌細胞凋亡
Essential oils of Origanum vulgare induce the caspase-dependent apoptosis of human lung cancer cells
作者: 蕭伸峰
Hsiao, Sheng-Feng
關鍵字: 凋亡蛋白酶人類非小細胞肺癌;Essential oils of Origanum vulgare;細胞凋亡;caspase;H1299;apoptosis
出版社: 生物化學研究所
引用: 1 Weinberg, R.A., Cancer Biology and Therapy: the road ahead. Cancer Biol Ther 1 (1), 3 (2002). 2 Folkman, J., Tumor angiogenesis. Adv Cancer Res 19 (0), 331-358 (1974). 3 Hanahan, D. & Weinberg, R.A., The hallmarks of cancer. Cell 100 (1), 57-70 (2000). 4 Danesi, R. et al., Pharmacogenomics in non-small-cell lung cancer chemotherapy. Adv Drug Deliv Rev 61 (5), 408-417 (2009). 5 Parkin, D.M., Bray, F., Ferlay, J., & Pisani, P., Estimating the world cancer burden: Globocan 2000. Int J Cancer 94 (2), 153-156 (2001). 6 Peto, R. et al., Smoking, smoking cessation, and lung cancer in the UK since 1950: combination of national statistics with two case-control studies. BMJ 321 (7257), 323-329 (2000). 7 Alberg, A.J. & Samet, J.M., Epidemiology of lung cancer. Chest 123 (1 Suppl), 21S-49S (2003). 8 Travis, W.D., Travis, L.B., & Devesa, S.S., Lung cancer. Cancer 75 (1 Suppl), 191-202 (1995). 9 Baldi, A. et al., Tumor suppressors and cell-cycle proteins in lung cancer. Patholog Res Int 2011, 605042. 10 Adamo, V. et al., Gefitinib in lung cancer therapy: clinical results, predictive markers of response and future perspectives. Cancer Biol Ther 8 (3), 206-212 (2009). 11 Cohen, M.H., Johnson, J.R., Chen, Y.F., Sridhara, R., & Pazdur, R., FDA drug approval summary: erlotinib (Tarceva) tablets. Oncologist 10 (7), 461-466 (2005). 12 Becker, E.B. & Bonni, A., Cell cycle regulation of neuronal apoptosis in development and disease. Prog Neurobiol 72 (1), 1-25 (2004). 13 Sherr, C.J. & Roberts, J.M., CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 13 (12), 1501-1512 (1999). 14 Malumbres, M. & Barbacid, M., Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer 9 (3), 153-166 (2009). 15 Adams, P.D., Regulation of the retinoblastoma tumor suppressor protein by cyclin/cdks. Biochim Biophys Acta 1471 (3), M123-133 (2001). 16 Sherr, C.J., Cancer cell cycles. Science 274 (5293), 1672-1677 (1996). 17 Smith, M.L. & Fornace, A.J., Jr., Mammalian DNA damage-inducible genes associated with growth arrest and apoptosis. Mutat Res 340 (2-3), 109-124 (1996). 18 Harper, J.W., Adami, G.R., Wei, N., Keyomarsi, K., & Elledge, S.J., The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 75 (4), 805-816 (1993). 19 Smits, V.A. et al., p21 inhibits Thr161 phosphorylation of Cdc2 to enforce the G2 DNA damage checkpoint. J Biol Chem 275 (39), 30638-30643 (2000). 20 Kerr, J.F., Wyllie, A.H., & Currie, A.R., Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26 (4), 239-257 (1972). 21 Jacobson, M.D., Weil, M., & Raff, M.C., Programmed cell death in animal development. Cell 88 (3), 347-354 (1997). 22 Arends, M.J. & Wyllie, A.H., Apoptosis: mechanisms and roles in pathology. Int Rev Exp Pathol 32, 223-254 (1991). 23 Ernest, N.J., Habela, C.W., & Sontheimer, H., Cytoplasmic condensation is both necessary and sufficient to induce apoptotic cell death. J Cell Sci 121 (Pt 3), 290-297 (2008). 24 Klionsky, D.J. & Emr, S.D., Autophagy as a regulated pathway of cellular degradation. Science 290 (5497), 1717-1721 (2000). 25 Kohler, C., Orrenius, S., & Zhivotovsky, B., Evaluation of caspase activity in apoptotic cells. J Immunol Methods 265 (1-2), 97-110 (2002). 26 Villa, P., Kaufmann, S.H., & Earnshaw, W.C., Caspases and caspase inhibitors. Trends Biochem Sci 22 (10), 388-393 (1997). 27 Rao, L., Perez, D., & White, E., Lamin proteolysis facilitates nuclear events during apoptosis. J Cell Biol 135 (6 Pt 1), 1441-1455 (1996). 28 Kothakota, S. et al., Caspase-3-generated fragment of gelsolin: effector of morphological change in apoptosis. Science 278 (5336), 294-298 (1997). 29 Kondo, T., Suda, T., Fukuyama, H., Adachi, M., & Nagata, S., Essential roles of the Fas ligand in the development of hepatitis. Nat Med 3 (4), 409-413 (1997). 30 Boldin, M.P. et al., A novel protein that interacts with the death domain of Fas/APO1 contains a sequence motif related to the death domain. J Biol Chem 270 (14), 7795-7798 (1995). 31 Zhang, H.T., Wu, J., Wen, M., Su, L.J., & Luo, H., Galangin induces apoptosis in hepatocellular carcinoma cells through the caspase 8/t-Bid mitochondrial pathway. J Asian Nat Prod Res 14 (7), 626-633. 32 Kluck, R.M., Bossy-Wetzel, E., Green, D.R., & Newmeyer, D.D., The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science 275 (5303), 1132-1136 (1997). 33 Lorenzo, H.K., Susin, S.A., Penninger, J., & Kroemer, G., Apoptosis inducing factor (AIF): a phylogenetically old, caspase-independent effector of cell death. Cell Death Differ 6 (6), 516-524 (1999). 34 Willis, S., Day, C.L., Hinds, M.G., & Huang, D.C., The Bcl-2-regulated apoptotic pathway. J Cell Sci 116 (Pt 20), 4053-4056 (2003). 35 Hengartner, M.O., The biochemistry of apoptosis. Nature 407 (6805), 770-776 (2000). 36 Boulares, A.H. et al., Role of poly(ADP-ribose) polymerase (PARP) cleavage in apoptosis. Caspase 3-resistant PARP mutant increases rates of apoptosis in transfected cells. J Biol Chem 274 (33), 22932-22940 (1999). 37 Reed, J.C., Jurgensmeier, J.M., & Matsuyama, S., Bcl-2 family proteins and mitochondria. Biochim Biophys Acta 1366 (1-2), 127-137 (1998). 38 Antonsson, B. & Martinou, J.C., The Bcl-2 protein family. Exp Cell Res 256 (1), 50-57 (2000). 39 D''Alessio, M. et al., Oxidative Bax dimerization promotes its translocation to mitochondria independently of apoptosis. FASEB J 19 (11), 1504-1506 (2005). 40 Desagher, S. et al., Bid-induced conformational change of Bax is responsible for mitochondrial cytochrome c release during apoptosis. J Cell Biol 144 (5), 891-901 (1999). 41 Kroemer, G., Petit, P., Zamzami, N., Vayssiere, J.L., & Mignotte, B., The biochemistry of programmed cell death. FASEB J 9 (13), 1277-1287 (1995). 42 Gottlieb, E., Vander Heiden, M.G., & Thompson, C.B., Bcl-x(L) prevents the initial decrease in mitochondrial membrane potential and subsequent reactive oxygen species production during tumor necrosis factor alpha-induced apoptosis. Mol Cell Biol 20 (15), 5680-5689 (2000). 43 Vale-Silva, L. et al., Correlation of the chemical composition of essential oils from Origanum vulgare subsp. virens with their in vitro activity against pathogenic yeasts and filamentous fungi. J Med Microbiol 61 (Pt 2), 252-260. 44 Sienkiewicz, M., Wasiela, M., & Glowacka, A., [The antibacterial activity of oregano essential oil (Origanum heracleoticum L.) against clinical strains of Escherichia coli and Pseudomonas aeruginosa]. Med Dosw Mikrobiol 64 (4), 297-307. 45 Karioti, A. et al., Analysis of the essential oil of Origanum dubium growing wild in Cyprus. Investigation of its antioxidant capacity and antimicrobial activity. Planta Med 72 (14), 1330-1334 (2006). 46 Mechergui, K. et al., Essential oils of Origanum vulgare L. subsp. glandulosum (Desf.) Ietswaart from Tunisia: chemical composition and antioxidant activity. J Sci Food Agric 90 (10), 1745-1749. 47 Serio, A., Chiarini, M., Tettamanti, E., & Paparella, A., Electronic paramagnetic resonance investigation of the activity of Origanum vulgare L. essential oil on the Listeria monocytogenes membrane. Lett Appl Microbiol 51 (2), 149-157. 48 Ocana-Fuentes, A., Arranz-Gutierrez, E., Senorans, F.J., & Reglero, G., Supercritical fluid extraction of oregano (Origanum vulgare) essentials oils: anti-inflammatory properties based on cytokine response on THP-1 macrophages. Food Chem Toxicol 48 (6), 1568-1575. 49 Ozkan, A. & Erdogan, A., A comparative study of the antioxidant/prooxidant effects of carvacrol and thymol at various concentrations on membrane and DNA of parental and drug resistant H1299 cells. Nat Prod Commun 7 (12), 1557-1560. 50 Spiridon, I. et al., Antioxidant capacity and total phenolic contents of oregano (Origanum vulgare), lavender (Lavandula angustifolia) and lemon balm (Melissa officinalis) from Romania. Nat Prod Res 25 (17), 1657-1661. 51 Chou, T.H., Ding, H.Y., Hung, W.J., & Liang, C.H., Antioxidative characteristics and inhibition of alpha-melanocyte-stimulating hormone-stimulated melanogenesis of vanillin and vanillic acid from Origanum vulgare. Exp Dermatol 19 (8), 742-750. 52 Al-Kalaldeh, J.Z., Abu-Dahab, R., & Afifi, F.U., Volatile oil composition and antiproliferative activity of Laurus nobilis, Origanum syriacum, Origanum vulgare, and Salvia triloba against human breast adenocarcinoma cells. Nutr Res 30 (4), 271-278. 53 Goun, E., Cunningham, G., Solodnikov, S., Krasnykch, O., & Miles, H., Antithrombin activity of some constituents from Origanum vulgare. Fitoterapia 73 (7-8), 692-694 (2002). 54 Srihari, T., Sengottuvelan, M., & Nalini, N., Dose-dependent effect of oregano (Origanum vulgare L.) on lipid peroxidation and antioxidant status in 1,2-dimethylhydrazine-induced rat colon carcinogenesis. J Pharm Pharmacol 60 (6), 787-794 (2008). 55 Park, K.R. et al., beta-Caryophyllene oxide inhibits growth and induces apoptosis through the suppression of PI3K/AKT/mTOR/S6K1 pathways and ROS-mediated MAPKs activation. Cancer Lett 312 (2), 178-188. 56 Savini, I., Arnone, R., Catani, M.V., & Avigliano, L., Origanum vulgare induces apoptosis in human colon cancer caco2 cells. Nutr Cancer 61 (3), 381-389 (2009). 57 Berrington, D. & Lall, N., Anticancer Activity of Certain Herbs and Spices on the Cervical Epithelial Carcinoma (HeLa) Cell Line. Evid Based Complement Alternat Med 2012, 564927. 58 Zhang, J., Cado, D., Chen, A., Kabra, N.H., & Winoto, A., Fas-mediated apoptosis and activation-induced T-cell proliferation are defective in mice lacking FADD/Mort1. Nature 392 (6673), 296-300 (1998). 59 Yeh, W.C. et al., FADD: essential for embryo development and signaling from some, but not all, inducers of apoptosis. Science 279 (5358), 1954-1958 (1998).
摘要: 
在傳統民俗療法中,奧勒岡(俗稱牛至)具有抗菌、消炎、抗氧化、抗腫瘤的功能,但這些療效至今尚未被科學化的驗證。本研究主要探討奧勒岡精油之抗癌活性及其作用機轉。首先利用氣相層析質譜儀分析精油之主要成分,以MTT分析方法廣泛性測試奧勒岡精油對不同癌細胞株之毒殺效果,其中以H1299的細胞毒殺效果最佳,當處理時間為24 hr時,其IC50值為69±1.5 μg/ml,且隨劑量及處理時間的增加,抑制癌細胞生長的作用愈明顯。用流式細胞儀進行分析,奧勒岡精油會導致H1299細胞生長週期滯留在G1期,而以PI-Annexin V雙染的分析結果,用精油處理24 hr後會使H1299肺癌細胞進入細胞凋亡前期。最後,以西方點墨法進一步證實,奧勒岡精油是藉由Cyclin D1和Cyclin E蛋白質表現之下降來導致H1299細胞週期滯留在G1期,並且Bax蛋白促使粒線體的cytochrome c釋放至細胞質中,進而活化caspase-8、caspase-9以及下游caspase-3的剪切活化和PARP的剪切,最後導致H1299走向細胞凋亡。由以上結果顯示,奧勒岡精油萃取物主要是透過凋亡蛋白酶的活化(caspase-dependent)來抑制人類非小細胞肺癌生長且使癌細胞走向凋亡途徑。

In folk medicine, Origanum vulgare is often considered having antibiotic, anti-inflammatory, antioxidant and antitumor activities. However, the efficacy of Origanum vulgare as mentioned above has not yet been proved by scientific process. Our research aimed to investigate the antitumor activities and its molecular mechanisms of essential oils extracted from Origanum vulgare. The major component, p-cymene, of essential oils of Origanum vulgare was analyzed by gas chromatography-mass spectrometry. MTT assay was used to measure the cytotoxicity of essential oils of Origanum vulgare in several cancer cell lines. Among them, the essential oils of Origanum vulgare exhibited high cytotoxicity on H1299 cell line. The IC50 values for H1299 cells was 69±1.5 μg/ml after 24 hrs treatment. The cytotoxic effects of essential oils on H1299 were examined at dose- and time-dependent manners. The flow cytometry analysis showed that the essential oils of Origanum vulgare caused G1 phase cell cycle arrest in H1299 cells. In addition, the annexin-V/Propidium iodide double staining analysis showed that the early apoptosis in H1299 was induced with 24 hrs treatment of the essential oils of Origanum vulgare. Furthermore, we confirmed that essential oils of Origanum vulgare caused G1 phase cell cycle arrest in H1299 through diminishing the expression level of cyclin D1 and cyclin E with Western blotting method. The Western blot also showed that essential oils induced pro-apoptotic Bax to facilitate the cytochrome c releasing from mitochondria to the cytosol. The above results activated caspase-8 and caspase-9, which in turn activated the caspase-3 and PARP cleavage, ultimately led H1299 cells to apoptosis. Our findings suggested that the essential oils extracted from Origanum vulgare inhibited the growth of human non-small-cell lung cancer cells, and induced the activation of caspase-dependent proteins which led to cell apoptosis.
URI: http://hdl.handle.net/11455/23569
其他識別: U0005-1906201318272700
Appears in Collections:生物化學研究所

Show full item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.