Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/23659
標題: 甲烷太古生物之相容質Nε-acetyl-β-lysine自體生合成基因以及酵素特性分析
Characterization of osmolyte Nε-acetyl-β-lysine biosynthetic genes and enzymes from methanogenic archaea
作者: 洪娟娟
Hung, Chuan-Chuan
關鍵字: 相容質;Nε-acetyl-β-lysine;甲烷太古生物;Lysine 2,3-aminomutase;β-lysine acetyltransferase;Methanogen;Archaea
出版社: 生命科學系所
引用: 王家麒。2002。受質專一性和鉀離子濃度對嗜鹽甲烷古生菌相容質甜菜鹼生合成酵素的影響。國立中興大學植物研究所碩士論文。 李宇堅。2004。嗜鹽性甲烷古生菌相容質甜菜鹼生合成酵素sarcosine, dimethylglycine N-methyltransferase的純化及活性分析。國立中興大學生命科學研究所碩士論文。 林芸。2008。高鹽太古生物在溫度、鹽及氧氣逆境下化學伴護因子對分子伴護蛋白基因表現的影響。國立中興大學生命科學研究所碩士論文。 洪堂耀。1997。嗜鹽性甲烷菌Methanohalophilus portucalensis FDF1運送相容質glycine betaine機制。國立中興大學植物研究所碩士論文。 陳詩雅。2006。嗜鹽性甲烷古生菌相容質甜菜鹼生合成酵素sarcosine, dimethylglycine N-methyltransferase的純化及特性探討。國立中興大學生命科學研究所碩士論文。 陳聖中。2005。甲烷太古生物之分類鑑定與其相容質甜菜鹼運輸系統的特色分析。國立中興大學生命科學系博士論文。 楊道任。1995。嗜鹽性甲烷古生菌相容質glycine betaine的合成相關酵素及其影響因子之研究。國立中興大學植物研究所碩士論文。 賴姝蓉。2011。高鹽甲烷太古生物之相容質甜菜鹼自體生合成酵素特性分析並探討其應用於模式生物阿拉伯芥與斑馬魚抗鹽抗旱的可行性。國立中興大學生命科學研究所博士論文。 Ainsa, J. A., E. Perez, V. Pelicic, F. X. Berthet, B. Gicquel and C. Martin. 1997. Aminoglycoside 2''-N-acetyltransferase genes are universally present in mycobacteria: characterization of the aac(2'')-Ic gene from Mycobacterium tuberculosis and the aac(2'')-Id gene from Mycobacterium smegmatis. Mol. Microbiol. 24: 431-441. Alekshun, M. N., and S. B. Levy. 1999. The mar regulon: multiple resistance to antibiotics and other toxic chemicals. Trends Microbiol. 7: 410-413. Alekshun, M. N., S. B. Levy, T. R. Mealy, B. A. Seaton, and J. F. Head. 2001. The crystal structure of MarR, a regulator of multiple antibiotic resistance, at 2.3 Å resolution. Nat. Struct. Biol. 8:710-714. Allen R. M., R. Chatterjee, M. S. Madden, P. W. Ludden and V. K. Shah. 1995. Biosynthesis of the iron-molybdenum cofactor of nitrogenase. Crit. Rev. Biotechnol. 14: 225-249. Arakawa, T. and S. N. Timasheff. 1985. The stabilization of protein by osmolytes. J. Biophy. 47: 411-414. Asha, H. and J. Gowrishankar. 1993. Regulation of kdp operon expression in Escherichia coli: evidence against turgor as signal for transcriptional control. J. Bacteriol. 175:4528-4537. Auton, M. and D. W. Bolen. 2005. Predicting the energetics of osmolyte-induced protein folding/unfolding. Proc. Natl. Acad. Sci. USA. 102: 15065-15068. Balch, W. E., G. E. Fox, C. J. Magrum, C. R. Woese, and R. S. Wolfe. 1979. Methanogens: reevalutation of a unique biological group. Microbial. Rev. 43:260-296. Ballal, A., B. Basu and S. K. Apte. 2007. The Kdp-ATPase system and its regulation. J Biosci. 32: 559-568. Baneyx, F. and M. Mujacic. 2004. Recombinant protein folding and misfolding in Escherichia coli. Nature. Biotechnol. 22:1399-1408. Berkovitch, F., E. Behshad, K. H. Tang, E. A. Enns, P. A. Frey and C. L. Drennan. 2004. A locking mechanism preventing radical damage in the absence of substrate, as revealed by X-ray of lysine 5,6-aminomutase. Proc. Natl. Acad. Sci. U. S. A. 101: 15870-15875. Boone, D. R., I. M. Mathrani, M.Y. Liu, J. A. G. F. Menaia, R. A. Mah and J. E. Boone. 1993. Isolation and characterization of Methanohalophilus portucalensis sp. nov. and DNA reassociation study of the genus Methanohalophilus. Int. J. Sys. Bact. 43:430-437. Brainard, G. C., J. P. Hanifin, J. M. Greeson, B. Byrne, G. Glickman, E. Gerner and M. D. Rollag. 2001. Action spectrum for melatonin regulation in humans: evidence for a novel circadian photoreceptor. J. Neurosci. 21: 6405-6412. Breton, C and A. Imberty. 1999. Structure/function studies of glycosyltransferases. Curr. Opin. Struct. Biol. 9: 563-571. Brekau, D., E. Mahlitz, A. Sauerwald, G. Layer and D. Jahn. 2003. Oxygen-dependent coproporphyrinogen oxidase (HemF) from Escherichia coli is stimulated by manganese. J. Biol. Chem. 278: 46625-46631. Briers, Y, G. Volckaert, A. Cornelissen, S. Lagaert, C. W. Michiels, K. Hertveldt and R. Lavigne. 2007. Muralytic activity and modular structure of the endolysins of Pseudomonas aeruginosa bacteriophages phiKZ and EL.. Mol. Microbiol. 65: 1334-1344. Brown, A. D. 1976. Microbial water stress. Bacteriol. Rev. 40: 803-846. Brown, A. D. 1990. Microbial water stress physiology: principles and perspectives. John Wiley & Sons, Inc., New York. Bukau, B and A. L. Horwich. 1998. The Hsp70 and Hsp60 chaperone machines. Cell. 92: 351-366. Burg, M. B. and J. D. Ferraris. 2008. Intracellular organic osmolytes: function and regulation. J Biol Chem. 283: 7309-7313. Burk, D. L., N. Ghuman, L. E. Wybenga-Groot and A. M. Berghuis. 2003. X-ray structure of the AAC(6'')-Ii antibiotic resistance enzyme at 1.8 A resolution; examination of oligomeric arrangements in GNAT superfamily members. Prot. Sci. 12: 426-437. Bursy, J., A. U. Kuhlmann, M. Pittelkow, H. Hartmann, M. Jebbar, A. J. Pierik, E. Bremer. 2008. Synthesis and uptake of the compatible solutes ectoine and 5-hydroxyectoine by Streptomyces coelicolor A3(2) in response to salt and heat stresses. Appl Environ Microbiol. 74: 7286-7296. Carrozza, M. J., R. T. Utley, J. L. Workman and J. Cote. 2003. The diverse functions of histone acetyltransferase complexes. Trends. Genet. 19: 321-329. Carter II, J. H., R. H. Du Bus, J. R. Dyer, J. C. Floyd, K. C. Rice and P. D. Shaw. 1974. Biosynthesis of viomycin. II. Origin of β-lysine and viomycidine. Biochem. 13: 1227-1233. Chang, C. H. and P. A. Frey. 2000. Cloning, sequencing, heterologous expression, purification, and characterization of adenosylcobalamin-dependent D-lysine 5,6-aminomutase from Clostridium sticklandii. J. Biol. Chem. 275: 106-114. Cheek, J. and J. B. Broderick. 2002. Direct H atom abstraction from spore photoproduct C-6 initiates DNA repair in the reaction catalyzed by spore photoproduct lyase: evidence for a reversibly generated adenosyl radical intermediate. J. Am. Chem. Soc. 124: 2860–2861. Chen, D. and P. A. Frey. 2001. Identification of lysine 346 as a functionally important residue for pyridoxal 5’-phosphate binding and catalysis in lysine 2,3-aminomutase from Bacillus subtilis. Biochem. 40: 596-602. Chen, D., P. A. Frey, B. W. Lepore, D. Ringe and F. J. Euzicka. 2006. Idetification of structural and catalytic classes of highly conserved amino acid residues in lysine 2,3-aminomutase. Biochem. 45: 12647-12653. Chen, S.-Y., M.-C. Lai, S.-J. Lai and Y.-C. Lee. 2009. Characterization of osmolyte betaine synthesizing sarcosine dimethylglycine N-methyltransferase from Methanohalophilus portucalensis. Arch Microbiol. 191: 735-743. Chen, D., F. J. Ruzicka and P. A. Frey. 2000. A novel lysine 2,3-aminomutase encoded by the yodO gene of Bacillus subtilis: characterization and the observation of organic radical intermediates. Biochem. 348: 539-549. Chen, D., J. Tanem and P. A. Frey. 2007. Basis of the equilibrium constant in the interconversion of L-lysine and L-β-lysine by lysine 2,3-aminomutase. Biochim. Biophys. Acta. 1774: 297-302. Chen, H. P., S. H. Wu, Y. L. Lin, C. M. Chen and S. S. Tsay. 2001. Cloning, sequencing, heterologous expression, purification, and characterization of adenosylcobalamin-dependent D-ornithine aminomutase from Clostridium sticklandii. J. Biol. Chem. 267: 44744-44750. Chirpich, T. P., V. Zappia, R. N. Costilow and H. A. Barker. 1970. Lysine 2,3-aminomutase. Purification and properties of a pyridoxal phosphate and S-adenosylmethionine-activated enzyme. J. Biol. Chem. 245: 1778-1789. Christenson, S. D., W. Liu, M. D. Toney and B. Shen. 2003. A novel 4-methylideneimidazole-5-one-containing tyrosine aminomutase in enediyne antitumor antibiotic C-1027 biosynthesis. J. Am. Chem. Soc. 125: 6062-6063. Choquet, G., N. Jehan, C. Pissavin, C. Blanco and M. Jebbar. 2005. OusB, a broad-specificity ABC-type transporter from Erwinia chrysanthemi, mediates uptake of glycine betaine and choline with a high affinity. Appli. Environ. Micro. 71: 3389-3398. Cicchillo, R.M., D. F. Iwig, A. D. Jones, N. M. Nesbitt, C. Baleanu-Gogonea, M. G. Souder, L. Tu and S. J. Booker. 2004a. Lipoyl synthase requires two equivalents of S-adenosyl-L-methionine to synthesize one equivalent of lipoic acid. Biochemistry. 43: 6348-6386. Cicchillo, R. M., K. H. Lee, C. Baleanu-Gogonea, N. M. Nesbitt, C. Krebs and S. J. Booker. 2004b. Escherichia coli lipoyl synthase binds two distinct [4Fe-4S] clusters per polypeptide. Biochemistry. 43: 11770-11781. Ciulla. R. A. and M. F. Roberts. 1999. Effects of osmotic stress on Methanococcus thermolithotrophicus: 13C-edited 1H-NMR studies of osmolyte turnover. Biochim. Biophys. Acta. 1427: 193-204. Ciulla, R. A., S. Burggraf, K. O. Stetter, and M. F. Roberts. 1994. Occurrence and role of di-myo-inositol-1,1´-phosphate in Methanococcus igneus. Appl. Environ. Microbiol. 60:3660-3664. Clements, A., J. R. Rojas, R. C. Trievel, L. Wang, S. L. Berger and R. Marmorstein. 1999. Crystal structure of the histone acetyltransferase domain of the human PCAF transcriptional regulator bound to coenzyme A. EMBO. J. 18: 3521-3532. Cone, M. C., X. Yin, L. L. Grochowski, M. R. Parker and T. M. Zabriskie. 2003. The Blasticidin S biosynthesis gene cluster from Streptomyces griseochromogenes: Sequence analysis, organization, and initial characterization. Chem. Bio. Chem. 4: 821-828. Csonka, L. N. 1989. Physiological and genetic responses of bacteria to osmotic stress. Microbiol. Rev. 53: 121-147. Culham, D. E., B. Lasby, A. G. Marangoni, J. L. Milner, B. A. Steer, R. W. V. Nues, and J. M. Wood. 1993. Isolation and Sequence of Escherichia coli Gene proP Reveals Unusual Structural Features of the Osmoregulatory Proline/Betaine Transporter, ProP. J. Mol. Biol. 229:268-276. Cusack, S., A. Yaremchuk and M. Tukalo. 2000. The 2 A crystal structure of leucyl-tRNA synthetase and its complex with a leucyl-adenylate analogue. EMBO J. 19: 2351-2361. Delamarche, C., D. Thomas, J. P. Rolland, A. Froger, J. Gouranton, M. Svelto, P. Agre and G. Calamita. 1999. Visualization of AqpZ-mediated water permeability in Escherichia coli by cryoelectron microscopy. J. Bacteriol. 181: 4193-4197. Delano, W. L. 2002. The PyMOL molecular graphics system. Delano Scientific, Palo Alto. Derman, A. I., W. A. Prinz, D. Belin and J. Bechwith. 1993. Mutations that allow disulfide bond formation in the cytoplasm of Escherichia coli. Sci. 262: 1744-1747. Diamant, S., N. Eliahu, D. Rosenthal and P. Goloubinoff. 2001. Chemical chaperones regulate molecular chaperones in vitro and in cells under combined salt and heat stresses. J. Biol. Chem. 276:39586-39596. Dosch, D. C., G. L. Helmer, S. H. Sutton, F. F. Salvacion and W. Epstein. 1991. Genetic analysis of potassium transport loci in Escherichia coli: evidence for three constitutive systems mediating uptake of potassium. J. Bacteriol. 173: 687-696. Draker, K. A., D. B. Northrop and G. D. Wright. 2003. Kinetic mechanism of the GCN5-related chromosomal aminoglycoside acetyltransferase AAC(6'')-Ii from Enterococcus faecium: evidence of dimer subunit cooperativity. Biochemistry. 42: 6565-6574. Draker, K. A. and G. D. Wright. 2004. Molecular mechanism of the enterococcal aminoglycoside 6''-N-acetyltransferase'': role of GNAT-conserved residues in the chemistry of antibiotic inactivation. Biochemistry. 43: 446-454. Dutnall, R. N., S. T. Tafrov, R. Sternglanz and V. Ramakrishnan. 1998. Structure of the histone acetyltransferase Hat1: a paradigm for the GCN5-related N-acetyltransferase superfamily. Cell. 94: 427-438. Dyda, F., D. C. Klein and A. B. Hickman. 2000. GCN5-related N-acetyltransferases: a structural overview. Annu. Rev. Biophys. Biomol. Struct. 29:81–103. Ellman, G. L. 1959. Tissue sulfhydryl group. Arch. Biochem. Biophys. 82: 70-77. Ellison, D. W., and V. L. Miller. 2006. Regulation of virulence by members of the MarR/SlyA family. Curr. Opin. Microbiol. 9:1-7. Eliasson, R., M. Fontecave, H. Jornvall, M. Krook, E. Pontis and P. Reichard. 1990. The anaerobic ribonucleoside triphosphate reductase from Escherichia coli requires S-adenosylmethionine as a cofactor. Proc Natl Acad Sci U S A. 87: 3314–3318. Empadinhas, N. and M. S. da Costa. 2008. Osmoadaptation mechanisms in prokaryotes: distribution of compatible solutes. Int. Microbiol. 11: 151-161. Epstein, W. 2003. The roles and regulation of potassium in bacteria. Prog. Nucleic Acid Res. Mol. Biol. 75: 293-320. Eriani, G., M. Delarue, O. Poch, J. Gangloff and D. Moras. 1990. Partition of tRNA synthetases into two classes based on mutually exclusive sets of sequence motifs. Nature. 347: 203-206. Falcón, J., V. Bolliet and J. P. Collin. 1996. Partial characterization of serotonin N- acetyltransferases from northern pike (Esox lucius, L.) pineal organ and retina: effects of temperature. Pflugers Arch. 432: 386-393. Florentin, D., M. T. Bui, A. Marquet, T. Ohshiro and Y. Izumi. 1994. On the mechanism of biotin synthase of Bacillus sphaericus. C. R. Acad Sci III 317:485–488. Foster, S. J. 1991. Cloning, expression, sequence analysis and biochemical characterization of an autolytic amidase of Bacillus subtilis 168 trpC2. J. Gen. Microbiol. 137: 1987-1998. Frey, P. A. 2001. Radical mechanisms of enzymatic catalysis. Annu. Rev. Biochem. 70:121-148. Frey, P. A., A. D. Hegeman and F. J. Ruzicka. 2008. The radical SAM superfamily. Crit. Rev. Biochem. Mol. Biol. 43: 63-88. Frey, P. A. and O. Th. Magnusson. 2003. S-adenosylmethionine: a wolf in sheep’s clothing, or a rich man’s adenosylcobalamin? Chem. Rev. 103: 2129-2148. Frey, P. A. and G. H. Reed. 1993. Lysine 2,3-aminomutase and the mechanism of the interconversion of lysine and beta-lysine. Adv. Enzymol. Relat. Areas. Mol. Biol. 66:1-39. Frey, P. A. and F. J. Ruzicka. 2001. DNA molecules encoding bacterial lysine 2,3-aminomutase. U.S. patent 6248874. Falkenberg, P. and A. R. Strøm. 1990. Purification and characterization of osmoregulatory betaine aldehyde dehydrogenase of Escherichia coli. Biochem. Biophys. Acta. 1034:253-259. Galinski, E. A. 1993. Compatible solutes of halophilic eubacteria: molecular principles, water-solute interaction, stress protection. Experi. 49: 265-274. Galinski, E. A. and H. G. Trüper. 1982. Betaine, a compatible solute in extremely halophilic phototrophic bacterium Ectothiorhodospira halochloris. FEMS Microbiol. Lett. 13: 357-360. Galinski, E. A. and H. G. Trüper. 1994. Microbial behaviour in salt-stressed ecosystems. FEMS Microbiol. Rev. 15: 95-108. Garcia, J. L. 1990. Taxonomy and ecology of methanogens. FEMS Microbiol. Rev. 87: 297-308. Garcia-Estepa, R., M. Argandona, M. Reina-Bueno, N. Capote, F. Iglesias-Guerra, J. J. Nieto, C. Vargas. 2006. The ectD gene, which is involved in the synthesis of the compatible solute hydroxyectoine, is essential for thermoprotection of the halophilic bacterium Chromohalobacter salexigens. J. Bacteriol. 188:3774-3784. Gasteiger, E., C. Hoogland, A. Gattiker, S. Duvaud, M. R. Wilkins, R. D. Appel and A. Bairoch. 2005. Protein identification and analysis tools on the ExPASy Server. In: Walker JM (ed) The proteomics protocols handbook. Humana Press, Totowa, pp 571–607. Gastel, J. A., P. H. Roseboom, P. A. Rinaldi, J. L. Weller and D. C. Klein. 1998. Melatonin production: proteolysis in serotonin N-acetyltransferase regulation. Science. 279: 1358-1360. Hamann, K., P. Zimmann and K. Altendorf. 2008. Reduction of turgor is not the stimulus for the sensor kinase KdpD of Escherichia coli. J. Bacteriol. 190: 2360-2367. Hänzelmann, P., H. L. Hernandez, C. Menzel, R. Garcia-Serres, B. H. Huynh, M. K. Johnson, R. R. Mendel and H. Schindelin. 2004. Characterization of MOCS1A, an oxygen-sensitive iron-sulfur protein involved in human molybdenum cofactor biosynthesis. J. Biol. Chem. 279: 34721-34734. Hanahan, D. 1983. Studies on transformation of Escherichia coli with plasmids. J. Mol. Biol. 166: 557-580. Hanover, J. A. 2001. Glycan-dependent signaling: O-linked N-acetylglucosamine. FASEB. J. 15: 1865-1876. Harder, J., R. Eliasson, E. Pontis, M. D. Ballinger and P. Reichard. 1992. Activation of the anaerobic ribonucleotide reductase from Escherichia coli by S-adenosylmethionine. J. Biol. Chem. 267: 25548-25552. Heermann, R., A. Fohrmann, K. Altendorf and K. Jung. 2003. The transmembrane domains of the sensor kinase KdpD of Escherichia coli are not essential for sensing K+ limitation. Mol. Microbiol. 47: 839-848. Heermann, R. and K. Jung. 2010. The complexity of the ''simple'' two-component system KdpD/KdpE in Escherichia coli. FEMS Microbiol. Lett. 304: 97-106. Heery, D. M. and P. M. Fischer. 2007. Pharmacological targeting of lysine acetyltransferases in human disease: a progress report. Drug Discov Today. 12: 88-99. Hegde, S. S., F. Javid-Majd and J. S. Blanchard. 2001. Overexpression and mechanistic analysis of chromosomally encoded aminoglycoside 2''-N-acetyltransferase (AAC(2'')-Ic) from Mycobacterium tuberculosis. J. Biol. Chem. 276: 45876-45881. Hernandez, H.L., F. Pierrel, E. Elleingand, R. Garcia-Serres, B. H. Huynh, M. K. Johnson, M. Fontecave and M. Atta. 2007. MiaB, a bifunctional radical-S- adenosylmethionine enzyme involved in the thiolation and methylation of tRNA, contains two essential [4Fe-4S] clusters. Biochemistry. 46: 5140-5147. Hickman, A. B., D. C. Klein and F. Dyda. 1999a. Melatonin biosyntheses: the structure of serotonin N-acetyltransferase at 2.5 Å resolution suggests a catalytic mechanism. Mol. Cell. 3: 23-32. Hickman, A. B., M. A. A. Namboodiri, D. C. Klein and F. Dyda. 1999b. The structural basis of ordered substrate binding by serotonin N-acetyltransferase: enzyme complex at 1.8 Å resolution with a bisubstrate analog. Cell. 97:361-369. Higgins, C. F., J. Cairney, D. A. Stirling, L. Sutherland and I. R. Booth. 1987. Osmotic regulation of gene expression: ionic strength as an intracellular signal? J. Appl. Physiol. 12: 339-344. Holtmann, G. and E. Bremer. 2004. Thermoprotection of Bacillus subtilis by exogenously provided glycine betaine and structurally related compatible solutes: involvement of Opu transporters. J. Bacteriol. 186:1683-1693. Howell, D. M., H. Xu and R. H. White. 1999. (R)-citramalate synthase in methanogenic archaea. J. Bacteriol. 181: 331-333. Howell, D. M., K. Harich, H. Xu and R. H. White. 1998. Alpha-keto acid chain elongation reactions involved in the biosynthesis of coenzyme B (7-mercaptoheptanoyl threonine phosphate) in methanogenic Archaea. Biochemistry 37: 10108-10117. Hungate, R. E. 1969. A roll tube method for cultivation of strict anaerobes, p117-132. In J. R. Norris and D. W. Ribbons (ed.) Method in microbiology, vol 3B. Academic press Inc., New York, NY. Ignatova, Z. and L. M. Gierasch. 2006. Inhibition of protein aggregation in vitro and in vivo by a natural osmoprotectant. Proc. Natl. Acad. Sci. USA. 103:13357-13361. Jarrell, K. F., D. Faguy, A. M. Hebert and M. L. Kalmokoff. 1992. A general method of isolating high molecular weight DNA from methanogenic archaea (archaebacteria). Can. J. Microbiol. 38: 65-68. Javor, B. 1989. Hypersaline environments: microbiology and biogeochemistry, p. 101-124. Springer-Verlag, New York. Jerpseth, M., B. Jerpseth, L. Briester and A. Greener. 1998. Codon bias-adjusted BL21 derivayives for protein expression. Strateg. 11: 3-4. Jung, H. 2001. Towards the molecular mechanism of Na+/solute symport in prokaryotes. Biochim. Biophys. Acta. 1505: 131-143. Jung, H. 2002. The sodium/substrate symporter family: structural and functional features. FEBS. Lett. 529: 73-77. Jung, K. and K. Altendorf. 2002. Towards an understanding of the molecular mechanisms of stimulus perception and signal transduction by the KdpD/KdpE system of Escherichia coli. J. Mol. Microbiol. Biotechnol. 4: 223-228. Jung, K., M. Veen and K. Altendrof. 2000. K+ and ionic strength directly influence the autophosphorylation activity of the putative turgor sensor KdpD of Escherichia coli. J. Bio. Chem. 275: 40142-40147. Kamachi, T., T. Kouno, K. Doitomi and K. Yoshizawa. 2011. Generation of adenosyl radical from S-adenosylmethionine (SAM) in biotin synthase. J. Inorg. Biochem. 105: 850-857. Kapitonov, D. and R. K. Yu. 1999. Conserved domains of glycosyltransferases. Glycobiology. 9: 961-978. Kempf, B. and E. Bremer. 1995. OpuA, an osmotically regulated binding protein-dependent transport system for the osmoprotectant glycine betaine in Bacillus subtilis. J. Biol. Chem. 270: 16701-16713. Kempf, B. and E. Bremer. 1998. Uptake and synthesis of compatible solutes as microbial stress response to high-osmolality environments. Arch. Chem. 170: 319-330. Kennedy, S. P., W. V. Ng, S. L. Salzberg, L. Hood and S. DasSarma. 2001. Understanding the adaptation of Halobacterium species NRC-1 to its extreme environment through computational analysis of its genome sequence. Geno. Resear. 11: 1641-1650. Khuri S., F. T. Bakker and J. M. Dunwell. 2001. Phylogeny, function, and evolution of the cupins, a structurally conserved, functionally diverse superfamily of proteins. Mol. Biol. Evol. 18: 593-605. Kinne, R. K. H. 1993. The role of organic osmolytes in osmoregulation: from bacteria to mammals. J. Expt. Zoo. 265: 346-355. King, D.S. and P. Reichard. 1995. Mass spectrometric determination of the radical scission site in the anaerobic ribonucleotide reductase of Escherichia coli. Biochem. Biophys. Res. Commun. 206: 731-735. Klein, D. C., S. L. Coon, P. H. Roseboom, J. L. Weller and M. Bernard. 1997. The melatonin rhythm-generating enzyme: molecular regulation of serotonin N-acetyltransferase in the pineal gland. Recent Prog. Horm. Res. 52: 307-358. Knappe, J., F. A. Neugebauer, H. P. Blaschkowski and M. Ganzler. 1984. Post-translational activation introduces a free radical into pyruvate formate-lyase. Proc Natl Acad Sci USA 81: 1332–1335. Koledin, T., G. L. Newton and R. C. Fahey. 2002. Identification of the mycothiol synthase gene (mshD) encoding the acetyltransferase producing mycothiol in actinomycetes. Arch. Microbiol. 178: 331-337. Koon, N., C. J. Squire and E. N. Baker. 2004. Crystal structure of LeuA from Mycobacterium tuberculosis, a key enzyme in leucine biosynthesis. Proc. Natl. Acad. Sci. U.S.A. 101: 8295-8300. Kozono, D., X. Ding, I. Iwasaki, X. Meng, Y. Kamagata, P. Agre and Y. Kitagawa. 2003. Functional expression and characterization of an Archaea aquaporin. J. Biol. Chem. 278: 10649-10656. Krämer, R. 2010. Bacterial stimulus perception and signal transduction: response to osmotic stress. Chem Rec. 10: 217-229. Kuhlmann, A. U. and E. Bremer. 2002. Osmotically regulated synthesis of the compatible solute ectoine in Bacillus pasteurii and related Bacillus sp. Appl. Environ. Microbiol. 68:772-783. Kumar S., J. Dudley, M. Nei and Tamura K. 2008. MEGA: A biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform. 9: 299-306. Kuo, M. M., W. J. Haynes, S. H. Loukin, C. Kung and Y. Saimi. 2005. Prokaryotic K(+) channels: from crystal structures to diversity. FEMS Microbiol Rev. 29: 961-985. Kung, C. and P. Blount. 2004. Channels in microbes: so many holes to fill. Mol. Microbiol. 53: 373-380. Lai, M.-C. and S.-C. Chen. 2001. Methanofollis aquaemaris sp. nov., a methanogen isolated from an aquaculture fish pond. Int. J. Syst. Evol. Microbiol. 51: 1873-1880. Lai, M.-C., S.-C. Chen, C.–M. Shu, M.-S. Chiou, C.-C. Wang, M.-J. Chuang, T.-Y Hong, C.-C. Liu, L.-J. Lai and J. J. Hua. 2002. Methanocalculus taiwanensis sp. nov., isolated from an estuarine environment. Int. J. Syst. Evol. Microbiol. 52: 1799-1806. Lai, M.-C. and R. P. Gunsalus. 1992. Glycine betaine and potassium ion are the major compatible solutes in the extremely halophilic methanogen Methanohalophilus strain Z7302. J. Bacteriol. 174:7474-7477. Lai, M.-C., T.-Y. Hong and R. P. Gunsalus. 2000. Glycine betaine transport in theobligate Halophilic Archaeon, Methanohalophilus portucalensis. J. Bacteriol. 182: 5020-5024. Lai, S.-J. and M.-C. Lai. 2011. Characterization and regulation of the osmolyte betaine synthesizing enzymes GSMT and SDMT from halophilic methanogen Methanohalophilus portucalensis. PLoS ONE. 6(9): e25090. Lai, M.-C. C.-C. Lin, P. Yu,Y.-F. Huang and S.-C. Chen. 2004. Methanocalculus chungshingensis sp. nov., isolated from an estuary and a marine fishpond in Taiwan. Int. J. Syst. Evol. Microbiol. 54: 183-189. Lai, M.-C., C.-M. Shu, M.-S. Chiou, T.-Y. Hong, M.-J. Chuang and J. J. Hua. 1999b. Characterization of Methanosarcina mazei N2M9705 Isolated from an Aquaculture Fishpond. Curr. Microbiol. 39:79-84. Lai, M.-C., K. R. Sowers, D. E. Robertson, M. F. Roberts and R. P. Gunsalus. 1991. Distribution of compatible solutes in the halophilic methanogenic archaebacteria. J. Bacteriol. 173:5352-5358. Lai, M.-C. C.-C Wang, M.-J Chuang, Y.-C Wu and Y.-C Lee. 2006. Effects of substrate and potassium on the betaine-synthesizing enzyme glycine sarcosine dimethylglycine N-methyltransferase from a halophilic methanoarchaeon Methanohalophilus portucalensis. Res. Microbiol. 157:948-955. Lai, M.-C. and D.-R. Yang. 1995. Osmoregulation of Methanohalophilus: de novo biosynthesis of glycine betaine and its regulatory factors: Abstract of Beijerinck Centennial. Microbial physiology and gene regulation: Emerging principles and application. The Hauge, The Netherlands. Lai, M.-C., D.-R. Yang and M.-J. Chuang. 1999a. Regulatory Factors Associated with Synthesis of the Osmolyte Glycine Betaine in the Halophilic Methanoarchaeon Methanohalophilus portucalensis. Appl. Envi. Microbiol. 65:828-833. Layer, G., E. Kervio, G. Morlock, D. W. Heinz, D. Jahn, J. Re´ tey and W. D. Schubert. 2005. Structural and functional comparison of HemN to other Radical SAM enzymes. Biol. Chem. 386: 971-980. Layer, G., J. Moser, D. W. Heinz, D. Jahn and W. D. Schubert. 2003. Crystal structure of coproporphyrinogen III oxidase reveals cofactor geometry of Radical SAM enzymes. EMBO. J. 22: 6214-6224. Layer, G., A. J. Pierik, M. Trost, S. E. Rigby, H. K. Leech, K. Grage, D. Breckdau, I. Astner, L. Jansch, P. Heathcote, M. J. Warren, D. W. Heinz and D. Jahn. 2006. The substrate radical of Escherichia coli oxygen-independent coproporphyrinogen III oxidase HemN. J. Biol. Chem. 281: 15727-15734. Le Rudulier, D., A. R. Strom, A. M. Dandekar, L. T. Smith and R. C. Valentine. 1984. Molecular biology of osmoregulation. Science. 224: 1064-1064. Leigh, J. A. 2000. Nitrogen fixation in methanogens: the archaeal perspective. Curr. Isssues Mol. Biol. 2: 125-131. Leigh J. A. and J.A. Dodsworth, 2007. Nitrogen regulation in bacteria and archaea, Annu. Rev. Microbiol. 61: 349-377. Lepore, B., F. J. Ruzicka, P. A. Frey and D. Ringe. 2005. The X-ray crystal structure of lysine 2,3-aminomutase from Clostridium subterminale. Proc. Natl. Acad. Sci. U.S.A. 102: 13819-13824. Lin, Y., C. M. Fletcher, J. Zhou, C. D. Allis and G. Wagner. 1999. Solution structure of the catalytic domain of GCN5 histone acetyltransferase bound to coenzyme A. Nature. 400: 86-89. Liu, A. and A. Graslund. 2000. Electron paramagnetic resonance evidence for a novel interconversion of [3Fe-4S](+) and [4Fe-4S](+) clusters with endogenous iron and sulfide in anaerobic ribonucleotide reductase activase in vitro. J. Biol. Chem. 275: 12367-12373. Llano-Sotelo, B., E. F. Azucena Jr., L.P. Kotra, S. Mobashery and C.S. Chow. 2002. Aminoglycosides modified by resistance enzymes display diminished binding to the bacterial ribosomal aminoacyl-tRNA site. Chem. Biol. 9: 455-463. Lotierzo, M., B. Tse Sum Bui, D. Florentin, F. Escalettes and A. Marquet. 2005. Biotin synthase mechanism: an overview. Biochem. Soc. Trans. 33: 820–823. Lu, W., B. Zhao, D. Feng, S. Yang. 2004. Cloning and characterization of the Halobacillus trueperi betH gene, encoding the transport system for the compatible solute glycine betaine. FEMS Microbiol. Lett. 235:393-399. Lu, W. D., Z. M. Chi and C. D. Su. 2006. Identification of glycine betaine as compatible solute in Synechococcus sp. WH8102 and characterization of its N-methyltransferase genes involved in betaine synthesis. Arch. Microbiol. 186:495-506. Madern, D., C. Ebel and G. Zaccai. 2000. Halophilic adaptation of enzymes. Extremophiles. 4: 91-98. MacMillan, S. V., D. A. Alexander, D. E. Culham, H. J. Kunte, E. V. Marshall, D. Rochon and J. M. Wood. 1999. The ion coupling and organic substrate specificities of osmoregulatory transporter ProP in Escherichia coli. Biochim. Biophys. Acta. 1420: 30-44. Magnet, S., P. Courvalin and T. Lambert. 1999. Activation of the cryptic aac(6'')-Iy aminoglycoside resistance gene of Salmonella by a chromosomal deletion generating a transcriptional fusion. J. Bacteriol. 181: 6650-6655. Magnet, S., T. Lambert, P. Courvalin and J. S. Blanchard. 2001. Kinetic and mutagenic characterization of the chromosomally encoded Salmonella enterica AAC(6'')-Iy aminoglycoside N-acetyltransferase. Biochemistry. 40: 3700-3709. Makrides, S. C. 1996. Strategies for achieving high-level expression of genes in Escherichia coli. Microbiol. Rev. 60: 512-538. Marmorstein, R. 2004. Biochemical and structural characterization of recombinant histone acetyltransferase proteins. Methods Enzymol. 376: 106-119. Martin, D. D., R. A. Ciulla, and M. F. Roberts. 1999. Osmoadaptation in Archaea. Appl. Envi. Microbiol. 65:1815-1825. Martinac, B., Y. Saimi and C. Kung. 2008. Ion channels in microbes. Physiol. Rev. 88: 1449-1490. Mathrani, I. M., and D. R. Boone. 1985. Isolation and characterization of a moderately halophilic methanogen from a solar saltern. Appl. Environ. Microbiol. 50:140-143. Mathrani, I. M., D. R. Boone and R. A. Mah. 1988. Isolation and characterization of halophilic methanogen and DNA/DNA homology studies of 12 halophilic methanogens. I-23, p184. Abstract 88th annumciate Meeting American Society Microbiology. Messing, J. 1979. A multipurpose cloning system based on the single-strand DNA bacteriophage M13. Recomb. DNA Tech. Bull. 2: 43-48. Milewski, S., I. Gabriel and J. Olchowy. 2006. Enzymes of UDP-GlcNAc biosynthesis in yeast. Yeast. 23: 1–14. Miller, J.R., R. W. Busby, S. W. Jordan, J. Cheek, T. F. Henshaw, G. W. Ashley, J. B. Broderick, J. E. Jr. Cronan and M. A. Marletta. 2000. Escherichia coli LipA is a lipoyl synthase: in vitro biosynthesis of lipoylated pyruvate dehydrogenase complex from octanoyl-acyl carrier protein. Biochemistry. 39:15166–15178. Mio, T., T. Yamada-Okabe, M. Arisawa and H. Yamada-Okabe. 1999. Saccharomyces cerevisiae GNA1, an essential gene encoding a novel acetyltransferase involved in UDP-N-acetylglucosamine synthesis. J. Biol. Chem. 274: 424-429. Mitraki, A. and J. King. 1989. Protein folding intermediates and inclusion body formation. Biotech. 7: 690-697. Moore, D.J., R.H. Reed, and W.D.P. Stewart. 1987. A glycine betaine transport system in Aphanothece halophytica and other glycine betaine-synthesising cyanobacteria. Arch. Microbiol. 147: 399-405. Miller, J.R., R. W. Busby, S. W. Jordan, J. Cheek, T. F. Henshaw, G. W. Ashley, J. B. Broderick, J. E. Jr. Cronan and M. A. Marletta. 2000. Escherichia coli LipA is a lipoyl synthase: in vitro biosynthesis of lipoylated pyruvate dehydrogenase complex from octanoyl-acyl carrier protein. Biochemistry. 39:15166–15178. Müller, S., T. Hoffmann, H. Santos, S. H. Saum, E. Bremer and V. Müller. 2011. Bacterial abl-like genes: production of the archaeal osmolyte Nε-acetyl-β-lysine by homologous overexpression of the yodP-kamA genes in Bacillus subtilis. Appl. Microbiol. Biotechnol. Müller, V., R. Spanheimer and H. Santos. 2005. Stress response by solute accumulation in archaea. Curr. Opin. Microbiol. 8:729-736. Navara, K. J. and R. J. Nelson. 2007. The dark side of light at night: physiological, epidemiological and ecological consequences. J Pineal Res. 43: 215-224. Neuwald, A. F. and D. Landsman. 1997. GCN5-related histone N-acetyltransferases belong to a diverse superfamily that includes the yeast SPT10 protein. Trends Biochem. Sci. 22: 154-155. Newton, G. L., C. A. Bewley, T. J. Dwyer, R. Horn, Y. Aharonowitz Y, G. Cohen, J. Davies, D. J. Faulkner and R. C. Fahey. 1995. The structure of U17 isolated from Streptomyces clavuligerus and its properties as an antioxidant thiol. Eur. J. Biochem. 230: 821-825. Nyyssölä, A., J. Kerovuo, P. Kaukinen, N. von Weymarn and T. Reinikainen. 2000. Extreme Halophiles Synthesize Betaine from Glycine by methylation. J. Biol. Chem. 275:22196-22201. Nyyssölä, A., T. Reinikainen, and M. Leisola. 2001. Characterization of Glycine Sarcsine N-Methyltransferase and Sarcosine Dimethylglycine N-Methyltransferase. Appl. Environ. Microbiol. 67:2044-2050. Oganesyana, N., I. Ankoudinovab, S. H. Kimb and R. Kimb. 2007. Effect of osmotic stress and heat shock in recombinant protein overexpression and crystallization. Protein Expr Purif. 52: 280-285. Ollivier, B. O., P. Caumette, J. Garcia and R. A. Mah. 1994. Anaerobic bacteria from hypersaline environments. Microbiol. Rev. 58: 27-38. Oren, A. 1999. Bioenergetic aspects of halophilism. Microbiol. Mol. Biol. Rev. 63: 334-348. Oren, A., M. Heldal, S. Norland and E. A. Galinski. 2002. Intracellular ion and organic solute concentrations of the extremely halophilic bacterium Salinibacter ruber. Extremophiles. 6: 491-498. Oren, A. 2008. Microbial life at high salt concentrations: phylogenetic and metabolic diversity. Saline Systems. 4: 2. Paterek
摘要: 
甲烷太古生物為了因應外界的高鹽環境,在細胞內會累積鉀離子、α-glutamate、 glycine betaine、β-glutamate、β-gultamine以及Nε-acetyl-β-lysine做為相容質來維持細胞膨壓並保護胞內酵素維持細胞正常生理代謝。甲烷太古生物累積相容質的選擇與合成和滲透壓濃度相關,研究相容質生合成基因與酵素可探討滲透壓調控機制。研究發現在甲烷太古生物中會累積特殊β型胺基酸Nε-acetyl-β-lysine做為相容質。其生合成途徑是由α-lysine經lysine 2,3-aminomutase (AblA)作用轉為β-lysine,再經由β-lysine acetyltransferase (AblB)作用生合成Nε-acetyl-β-lysine。本研究針對三株生長在不同鹽度、利用不同甲烷基質的甲烷太古生物,海洋型Methansarcina mazei N2M9705、耐鹽性Methanocalculus chunghsingensis K1F9705bT以及嗜鹽性Methanohalophilus portucalensis FDF1T,探討相容質Nε-acetyl-β-lysine生合成基因與酵素的特性,以聚合酶連鎖反應及南方墨漬法獲得這三株甲烷太古生物的Nε-acetyl-β-lysine生合成基因組ablA-ablB。分析三株甲烷太古生物的lysine 2,3-aminomutase (AblA)胺基酸序列皆具有參與催化活性的輔助因子 (cofactor): [4Fe-4S] cluster、S-adenosylmethionine (SAM)、pyridoxal 5’-phosphate (PLP)以及鋅鍵結的位置;β-lysine acetyltransferase (AblB)胺基酸序列包含四個保留的motif (A-D),在acetyl coenzyme A鍵結的motif A上具有一段高度保留性的胺基酸序列為R-G-K/L-G-H/L-M/S-K/G。由系統演化分析顯示ablA以及ablB基因序列可能在嗜鹽性、耐鹽性甲烷太古生物與嗜鹽性綠硫菌間;以及在Methanosarcina屬與bacillial/ clostridial之間分別發生基因水平傳播。以北方墨漬法證實ablA-ablB基因組為同一轉錄單元,並證實MpablA-ablB基因會受到高鹽逆境誘導提升轉錄量,相容質glycine betaine以及高溫逆境誘導會抑制其轉錄量,不受低溫逆境影響,顯示Nε-acetyl-β-lysine於FDF1T細胞中主要是做為滲透壓保護的容質。異源表現並純化AblB蛋白進行酵素特性分析發現,MpAblB以及McAblB蛋白對受質acetyl-CoA的親和性高,Km值分別為54.348 μM以及58.140 μM,而對α-lysine的親和性低且催化可能具有協同作用,估算其K0.5值範圍為40~310 mM,對α-lysine親和性低的原因可能為AblB蛋白對受質β-lysine專一性高所致;並且在鉀離子以及鈉離子存在下會抑制異源表現的MpAblB以及McAblB蛋白活性。雖未能偵測到AblA蛋白活性,然而耐鹽、嗜鹽生物的蛋白酵素多具有耐鹽、耐溶劑與耐低水活性的特質,顯示嗜鹽性與耐鹽性甲烷太古生物的AblA蛋白在β-型胺基酸生成酵素的研發與應用,對藥物開發是相當重要並且具有潛力的。

To adapt to the broad range of salt concentrations, methanogenic archaea accumulate potassium, α-glutamate, glycine betaine, β-glutamate, β-gultamine and Nε-acetyl-β-lysine as compatible solutes (osmolytes) to encounter the osmotic stress. The accumulation of Nε-acetyl-β-lysine as osmolyte is ubiquitous among methanogenic archaea, but not for other organisms. Nε-acetyl-β-lysine is synthesized from lysine through lysine 2,3-aminomutase (AblA) to form β-lysine and the acetyl group is further transferred to β-lysine by β-lysine acetyltransferase (AblB). The ablA and ablB genes were screened and obtained through PCR and Southern hybridization techniques from the marine Methanosarcina mazei N2M9705, halotolerant Methanocalculus chunghsingensis K1F9705bT and halophilic Methanohalophilus portucalensis FDF1T. The amino acid sequences of lysine 2,3-aminomutase (AblA) from these three methanogenic archaea contains ligands of the Fe/S cluster, SAM binding domain, PLP binding site and zinc binding sites; and β-lysine acetyltransferase (AblB) is a member of the GNAT [GCN5 (general control non-derepressible 5)-related N-acetyltransferase] superfamily of enzymes that contain R/Q-G/K-K/L-G-H/L-M/S-K/G segment. Compared the phylogenetic relationships of ablA and ablB genes along with 16S RNA genes, suggested the possible horizontal gene transfer may occur within halotolerant, halophilic methanogen and halophilic green-sulfur bacteria; or within Methanosarcina sp. and Bacillus/ Clostridium. Northern hybridization results showed that ablA and ablB were in one transcribed unit, and the osmolyte Nε-acetyl-β-lysine biosynthetic related genes from M. portucalensis FDF1T were salt up-regulated, but not immediately response to the temperature stress. The recombinant MpAblB and McAblB showed the high binding affinity to acetyl-CoA with Km value at 54.348 μM and 58.140 μM, respectively. Whereas the binding affinity to α-lysine were low with K0.5 value at 40~310 mM, suggested the AblB exihibits cooperative binding of α-lysine. Low affinity to α-lysine may due to the high specificity to β-lysine of the β-lysine acetyltransferase. The acetyltransferase activity of the recombinant MpAblB and McAblB were repressed by increasing level of potassium or sodium ions. Extremozymes from halotolerant and halophilic archaea were capable of salt-tolerant, solven-tolerant and retain catalytic activity in environments with low water activity. Lysine 2,3-aminomutase from methanoarchaea, especially from the halophilic methanogens, could act as potential biocatalysts for the synthesis of β-lysine, which can be applied in pharmaceutical applications.
URI: http://hdl.handle.net/11455/23659
其他識別: U0005-0702201211255900
Appears in Collections:生命科學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.