Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/2366
標題: 整合型氧化鈷微濕度感測器與微一氧化碳感測器
Integrated micro humidity sensor and micro carbon monoxide with cobalt oxide
作者: 陳彥崎
Chen, Yen-Chi
關鍵字: cobalt oxide;氧化鈷;humidity sensor;ring oscillator circuit;carbon monoxide sensor;nanotubes;CMOS;濕度感測器;CO感測器;環狀振盪電路;奈米碳管;積體電路
出版社: 機械工程學系所
引用: [1] M. Gilbert, Introduction to Environmental Engineering and Science, Rrentice Hall, New Jersey, 1997. [2]盧德豪,整合型的聚吡咯微濕度感測器,國立中興大學機械研究所碩士論文,2008. [3] G. Montesperelli, A. Pumo, E. Traversa, G. Gusmano, A. Bearzotti, A. Montenero, and G. Gnappi, “Sol-gel processed Ti02-based thin films as innovative humidity sensors,” Sensors and Actuators B ,Vol. 24-25, pp.705-709, 1995. [4] M. Ando , T. Kobayashi, and M. Haruta, “Humidity-sensitive optical absorption of Co3O4 film,” Sensors and Actuators B, Vol. 32, pp.157-160, 1996. [5] H. Shibata, M. Ito, M. Asakursa, and K. Watanabe, “A digital hygrometer using a ployimide film relative humidity sensor,” IEEE Transactions on Instrumentation and Measurement, Vol. 45, pp. 218-224, 1998. [6] S. Chakraborty, K. Nemoto, K. Hara, and P. T. Lai, “Moisture sensitive field effect transistors using SiO2/Si3N4/Al2O3 gate structure,” Sensors and Actuators, Vol.8, pp. 274-277, 1999. [7] Y. Y. Qiu, C. Azeredo-Leme, L. R. Alcacer, and J. E. Franca, “A CMOS humidity sensor with on-chip calibration,” Sensors and Actuators A, Vol. 92, No. 1-3, pp. 80-87 , 2001. [8] C. Laville, J. Y. Deletage, and C. Pellet, “Humidity sensors for a pulmonary function diagnostic microsystem,” Sensors and Actuators B, Vol. 76, No. 1-3, pp. 304-309, 2001. [9] C. Laville, and C. Pellet, “Interdigitated humidity sensors for a portable clinical microsystem,” IEEE Transactions on Biomedical Engineering, Vol. 49, No. 10, pp. 1162-1167, 2002. [10] C. Y. Lee, and G. B. Lee, “MEMS-bases humidity sensors with integrated temperature sensors for signal drift compensation,” IEEE Sensors, Vol. 1, pp. 384-388, 2003. [11] L. Gu, Q. Huang, and M. Qin, “A novel capacitive-type humidity sensor using CMOS fabrication technology,” Sensors and Actuators B, Vol 99, pp. 491-498, 2004. [12] T. W. John, and P. M. James, “Capacitive humidity sensing using carbon nanotube enabled capillary condensation,” Proceedings of IEEE Sensors, pp. 439-443, 2006. [13] N. Parvatikar, S. Jain, S. Khasima, M. Revansiddappa, S.V. Bhoraskar, and M.V.N. A. Prasad, “Electrical and humidity sensing properties of polyaniline/WO3 composites,” Sensors and Actuators B, Vol. 114, pp. 599–603, 2006. [14] N. Parvatikar, S. Jain, C. M. Kanamadi, B. K. Chougule, S.V.Bhoraskar, and M. V. N. Prasad, “Humidity Sensing and Electrical Properties of Polyaniline/ Cobalt Oxide Composites,” Journal of Applied Polymer Science, Vol. 103, pp.653–658, 2007. [15] H. Yamaura , K. Moriya , N. Miura , and N. Yamazoe, “Mechanism of sensitivity promotion in CO sensor using indium oxide and cobalt oxide,” Sensors and Actuators B, Vol. 65, pp. 39–41,200. [16]F. Li, J. Xu, X. Yu, L. Chen, J. Zhu, Z. Yang, and X. Xin, “One-step solid-state reaction synthesis and gas sensing property of tin oxide nanoparticles,” Sensors and Actuators B, Vol.81, pp. 165-169, 2002. [17]H. W. Ryu, B. S. Park, S. A. Akbar, W. S. Lee, K. J. Hong, Y. J. Seo, D. C. Shin, J. S. Park, and G. P. Choi, “ZnO sol–gel derived porous film for CO gas sensing,” Sensors and Actuators B, Vol. 96, pp. 717-722, 2003. [18] M. Matsumiya, F. Qiu, W. Shin, N. Izu, I. Matsubara, N. Murayama, and S. Kanzaki, “Thermoelectric CO Gas Sensor Using Thin-Film Catalyst of Au and Co3O4,” Journal of The Electrochemical Society, Vol. 151, pp. H7-H10, 2004. [19] U. Lampe, E. Simon, R. Pohle , M. Fleischer , H. Meixner ,H. P. Frerichs , M. Lehmann, and G. Kiss, “GasFET for the detection of reducing gases,” Sensors and Actuators B, Vol. 111-112, pp. 106-110, 2005. [20] S.M.A. Durrani , and M.F. Al-Kuhaili, “Effect of biasing voltages and electrode metals and materials on the sensitivity of electron beam evaporated HfO2 thin film CO sensor ,” Materials Chemistry and Physics, Vol. 109, pp. 56-60, 2008. [21] Z. Serge, and D. Vince, “The nanostructured Au-doped cobalt oxyhydroxide based carbon monoxide sensor for fire detection at its earlier stages” Measurement Science and Technology, Vol. 19, n 2, 2008. [22] 黃正光,CMOS數位積體電路分析與設計,全華圖書,1997。 [23] A. S. Sedra, and K. C. Smith, Microelectronic circuits, fifth edition, pp. 72-73, 2004. [24] 蔡東剛,氫氧氧化鈷的製備及在一氧化碳感測氣上的應用,國立清華大學碩士論文,2004。 [25] B. Geng, F. Zhan, C. Fang, and N. Yu, “A facile coordination compound precursor route to controlled synthesis of Co3O4 nanostructures and their room-temperature gas sensing properties,” Journal of Materials Chemistry, Vol. 18, pp. 4977-4984, 2008. [26]莊達人,VLSI 製造技術,高立圖書有限公司,2000。 [27]S. M. Sze, Semiconductor Sensors , John Wiley and Sons, (1994) 388-396. [28]詹熾樺,以導電高分子-聚苯胺製作整合型微氨氣感測器,國立中興大學機械研究所碩士論文,2008。
摘要: 
本研究利用CMOS-MEMS技術製作整合型氧化鈷微濕度感測器及一氧化碳感測器,所採用的感測薄膜以氧化鈷為基礎,利用沈澱氧化法製作而成,不但製備方法容易,且可有效的降低成本。濕度感測器的電極為梳狀結構,並將氧化鈷薄膜滴覆在電極間,作為電容的介電層,其感測原理為當氧化鈷薄膜吸附水汽時,會造成材料的介電係數產生變化,而產生電容值變化。此氧化鈷濕度感測器所整合的感測電路為環狀振盪電路,可將電容訊號透過環狀振盪電路,將訊號轉換為頻率輸出,藉此量測環境中的濕度變化。
濕度感測器之感測區總面積為900×750 µm2,純電容對濕度的量測部份,在室溫下,當相對濕度從25 %上升至85 %,電容變化由43.08 pF上升至196.42 pF,總變化量為153.34 pF;在頻率量測部份,在室溫下,當相對濕度從25 %上升至85%,振盪頻率變化由41.13 MHz下降至26.78 MHz,總變化量為14.35 MHz,且由升濕降濕的量測過程中,釋放濕度後仍可回覆到起始值,由此可知,氧化鈷薄膜在濕度感測的應用上,是非常具有實用性及信賴性。
ㄧ氧化碳感測器的電極為多晶矽繞線結構,將氧化鈷薄膜摻入奈米碳管後,滴覆在電極上,其感測原理為當氧化鈷薄膜吸附一氧化碳時,透過自然氧化層,間接造成感測電極產生電阻變化。並整合運算放大器將電阻訊號轉換成電壓訊號,並且有效的將訊號放大,藉此量測一氧化碳的濃度變化。一氧化碳感測器之感測區總面積為750×400 μm2,而電阻量測部份,室溫下,當通入0~200 ppm的一氧化碳,其電阻由19.988 kΩ上升至21.08 KΩ,總變化量為1.092 kΩ,靈敏度為5.463;整合電路的量測部份,室溫下,當通入0~200 ppm的一氧化碳,其電壓由825.76 mV上升至863.26 mV,總變化量為37.5 mV,感測靈敏度為0.188mV/ppm。對一氧化碳的反應時間為23秒,回復時間為35秒,由此可得知摻雜後的氧化鈷,對一氧化碳有著優異的性能。

The study presents a micro humidity sensor and a micro carbon monoxide (CO) sensor integrated with readout circuit on chip, which that is manufactured by the commercial 0.35 um complementary metal oxide semiconductor (CMOS) process and a post-process. The humidity sensor is composed of an oscillator circuit, a sensing comb and a humidity sensing film. CoOOH prepared by the precipitation-oxidation method is adopted as the humidity sensing film. The electrodes consist of interdigital structures, and the cobalt oxide is coated on the interdigital electrodes. The humidity sensor, which is a capacitance type sensor, changes in dielectric constant when the sensing film adsorbs vapor. The oscillator circuit is employed to convert the capacitance of the humidity sensor into the frequency output. The experimental results show that the capacitance increases from 43.08 to 196.42 pF as the humidity changes from 25 %RH to 85 %RH at 25 ℃. The resonant frequency of the humidity sensor with oscillator circuit varies from 41.13 MHz to 26.78 MHz as humidity changes from 25 %RH to 85 %RH at 25 ℃.
The micro carbon CO sensor is composed of an operation amplifier, a sensing polysilicon resistor and a CO gas sensing film. The nanotube-CoOOH prepared by the hydrothermal method is adopted as the CO gas sensing film. The gas sensor, which is a resistive type sensor, changes the resistance when the sensing film adsorbs CO gas. The readout circuit is utilized to convert the resistance of the gas sensor into the voltage output. The experimental results show that the resistive increases from 19.988 kΩ to 21.08 kΩ as the CO concentration changes from 0 to 200 ppm at 25 ℃. The sensitivity of the CO sensor is about 0.188 mV/ppm and the response/recovery time was 23/35s, respectively.
URI: http://hdl.handle.net/11455/2366
其他識別: U0005-2601201020240600
Appears in Collections:機械工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.