Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributor.authorHsu, Fu-Ningen_US
dc.identifier.citation1. Rhim, J. S. and Kung, H. F. Human prostate carcinogenesis. Crit Rev Oncog, 8: 305-328, 1997. 2. Feldman, B. J. and Feldman, D. The development of androgen-independent prostate cancer. Nat Rev Cancer, 1: 34-45, 2001. 3. Grossmann, M. E., Huang, H., and Tindall, D. J. Androgen receptor signaling in androgen-refractory prostate cancer. J Natl Cancer Inst, 93: 1687-1697, 2001. 4. Rau, K. M., Kang, H. Y., Cha, T. L., Miller, S. A., and Hung, M. C. The mechanisms and managements of hormone-therapy resistance in breast and prostate cancers. Endocr Relat Cancer, 12: 511-532, 2005. 5. Culig, Z. Role of the androgen receptor axis in prostate cancer. Urology, 62: 21-26, 2003. 6. Heinlein, C. A. and Chang, C. Androgen receptor in prostate cancer. Endocr Rev, 25: 276-308, 2004. 7. Culig, Z. and Bartsch, G. Androgen axis in prostate cancer. J Cell Biochem, 99: 373-381, 2006. 8. Sheflin, L., Keegan, B., Zhang, W., and Spaulding, S. W. Inhibiting proteasomes in human HepG2 and LNCaP cells increases endogenous androgen receptor levels. Biochem Biophys Res Commun, 276: 144-150, 2000. 9. Lipford, J. R. and Deshaies, R. J. Diverse roles for ubiquitin-dependent proteolysis in transcriptional activation. Nat Cell Biol, 5: 845-850, 2003. 10. Nawaz, Z., Lonard, D. M., Smith, C. L., Lev-Lehman, E., Tsai, S. Y., Tsai, M. J., and O''Malley, B. W. The Angelman syndrome-associated protein, E6-AP, is a coactivator for the nuclear hormone receptor superfamily. Mol Cell Biol, 19: 1182-1189, 1999. 11. Suzuki, H., Ueda, T., Ichikawa, T., and Ito, H. Androgen receptor involvement in the progression of prostate cancer. Endocr Relat Cancer, 10: 209-216, 2003. 12. Li, R., Wheeler, T., Dai, H., Frolov, A., Thompson, T., and Ayala, G. High level of androgen receptor is associated with aggressive clinicopathologic features and decreased biochemical recurrence-free survival in prostate: cancer patients treated with radical prostatectomy. Am J Surg Pathol, 28: 928-934, 2004. 13. Ruizeveld de Winter, J. A., Trapman, J., Vermey, M., Mulder, E., Zegers, N. D., and van der Kwast, T. H. Androgen receptor expression in human tissues: an immunohistochemical study. J Histochem Cytochem, 39: 927-936, 1991. 14. Isaacs, J. T. and Isaacs, W. B. Androgen receptor outwits prostate cancer drugs. Nat Med, 10: 26-27, 2004. 15. Devlin, H. L. and Mudryj, M. Progression of prostate cancer: multiple pathways to androgen independence. Cancer Lett, 274: 177-186, 2009. 16. Gelmann, E. P. Molecular biology of the androgen receptor. J Clin Oncol, 20: 3001-3015, 2002. 17. Blom, N., Gammeltoft, S., and Brunak, S. Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. J Mol Biol, 294: 1351-1362, 1999. 18. Gioeli, D., Ficarro, S. B., Kwiek, J. J., Aaronson, D., Hancock, M., Catling, A. D., White, F. M., Christian, R. E., Settlage, R. E., Shabanowitz, J., Hunt, D. F., and Weber, M. J. Androgen receptor phosphorylation. Regulation and identification of the phosphorylation sites. J Biol Chem, 277: 29304-29314, 2002. 19. Kesler, C. T., Gioeli, D., Conaway, M. R., Weber, M. J., and Paschal, B. M. Subcellular localization modulates activation function 1 domain phosphorylation in the androgen receptor. Mol Endocrinol, 21: 2071-2084, 2007. 20. Shigemura, K., Isotani, S., Wang, R., Fujisawa, M., Gotoh, A., Marshall, F. F., Zhau, H. E., and Chung, L. W. Soluble factors derived from stroma activated androgen receptor phosphorylation in human prostate LNCaP cells: Roles of ERK/MAP kinase. Prostate, 2009. 21. Liu, S., Yuan, Y., Okumura, Y., Shinkai, N., and Yamauchi, H. Camptothecin disrupts androgen receptor signaling and suppresses prostate cancer cell growth. Biochem Biophys Res Commun, 394: 297-302, 2010. 22. Hsu, F. N., Yang, M. S., Lin, E., Tseng, C. F., and Lin, H. The significance of Her2 on androgen receptor protein stability in the transition of androgen requirement in prostate cancer cells. Am J Physiol Endocrinol Metab, 2011. 23. Mellinghoff, I. K., Vivanco, I., Kwon, A., Tran, C., Wongvipat, J., and Sawyers, C. L. HER2/neu kinase-dependent modulation of androgen receptor function through effects on DNA binding and stability. Cancer Cell, 6: 517-527, 2004. 24. Chen, S., Xu, Y., Yuan, X., Bubley, G. J., and Balk, S. P. Androgen receptor phosphorylation and stabilization in prostate cancer by cyclin-dependent kinase 1. Proc Natl Acad Sci U S A, 103: 15969-15974, 2006. 25. Krause, D. S. and Van Etten, R. A. Tyrosine kinases as targets for cancer therapy. N Engl J Med, 353: 172-187, 2005. 26. Hynes, N. E. and Lane, H. A. ERBB receptors and cancer: the complexity of targeted inhibitors. Nat Rev Cancer, 5: 341-354, 2005. 27. Olayioye, M. A., Neve, R. M., Lane, H. A., and Hynes, N. E. The ErbB signaling network: receptor heterodimerization in development and cancer. Embo J, 19: 3159-3167, 2000. 28. Lee, M. S. and Tsai, L. H. Cdk5 at the junction. Nat Neurosci, 4: 340-342, 2001. 29. Williams, R., Sanghera, J., Wu, F., Carbonaro-Hall, D., Campbell, D. L., Warburton, D., Pelech, S., and Hall, F. Identification of a human epidermal growth factor receptor-associated protein kinase as a new member of the mitogen-activated protein kinase/extracellular signal-regulated protein kinase family. J Biol Chem, 268: 18213-18217, 1993. 30. Carraway, K. L., 3rd, Soltoff, S. P., Diamonti, A. J., and Cantley, L. C. Heregulin stimulates mitogenesis and phosphatidylinositol 3-kinase in mouse fibroblasts transfected with erbB2/neu and erbB3. J Biol Chem, 270: 7111-7116, 1995. 31. Tan, M., Jing, T., Lan, K. H., Neal, C. L., Li, P., Lee, S., Fang, D., Nagata, Y., Liu, J., Arlinghaus, R., Hung, M. C., and Yu, D. Phosphorylation on tyrosine-15 of p34(Cdc2) by ErbB2 inhibits p34(Cdc2) activation and is involved in resistance to taxol-induced apoptosis. Mol Cell, 9: 993-1004, 2002. 32. Krauss, W. C., Park, J. W., Kirpotin, D. B., Hong, K., and Benz, C. C. Emerging antibody-based HER2 (ErbB-2/neu) therapeutics. Breast Dis, 11: 113-124, 2000. 33. Chen, C. D., Welsbie, D. S., Tran, C., Baek, S. H., Chen, R., Vessella, R., Rosenfeld, M. G., and Sawyers, C. L. Molecular determinants of resistance to antiandrogen therapy. Nat Med, 10: 33-39, 2004. 34. Culig, Z., Hobisch, A., Cronauer, M. V., Radmayr, C., Trapman, J., Hittmair, A., Bartsch, G., and Klocker, H. Androgen receptor activation in prostatic tumor cell lines by insulin-like growth factor-I, keratinocyte growth factor, and epidermal growth factor. Cancer Res, 54: 5474-5478, 1994. 35. Scher, H. I., Sarkis, A., Reuter, V., Cohen, D., Netto, G., Petrylak, D., Lianes, P., Fuks, Z., Mendelsohn, J., and Cordon-Cardo, C. Changing pattern of expression of the epidermal growth factor receptor and transforming growth factor alpha in the progression of prostatic neoplasms. Clin Cancer Res, 1: 545-550, 1995. 36. Gregory, C. W., Fei, X., Ponguta, L. A., He, B., Bill, H. M., French, F. S., and Wilson, E. M. Epidermal growth factor increases coactivation of the androgen receptor in recurrent prostate cancer. J Biol Chem, 279: 7119-7130, 2004. 37. Ueda, T., Mawji, N. R., Bruchovsky, N., and Sadar, M. D. Ligand-independent activation of the androgen receptor by interleukin-6 and the role of steroid receptor coactivator-1 in prostate cancer cells. J Biol Chem, 277: 38087-38094, 2002. 38. Hellmich, M. R., Pant, H. C., Wada, E., and Battey, J. F. Neuronal cdc2-like kinase: a cdc2-related protein kinase with predominantly neuronal expression. Proc Natl Acad Sci U S A, 89: 10867-10871, 1992. 39. Weishaupt, J. H., Neusch, C., and Bahr, M. Cyclin-dependent kinase 5 (CDK5) and neuronal cell death. Cell Tissue Res, 312: 1-8, 2003. 40. Tsai, L. H., Delalle, I., Caviness, V. S., Jr., Chae, T., and Harlow, E. p35 is a neural-specific regulatory subunit of cyclin-dependent kinase 5. Nature, 371: 419-423, 1994. 41. Chen, M. C., Lin, H., Hsu, F. N., Huang, P. H., Lee, G. S., and Wang, P. S. Involvement of cAMP in nerve growth factor-triggered p35/Cdk5 activation and differentiation in PC12 cells. Am J Physiol Cell Physiol, 299: C516-527, 2010. 42. Dhavan, R. and Tsai, L. H. A decade of CDK5. Nat Rev Mol Cell Biol, 2: 749-759, 2001. 43. Kanungo, J., Zheng, Y. L., Mishra, B., and Pant, H. C. Zebrafish Rohon-Beard neuron development: cdk5 in the midst. Neurochem Res, 34: 1129-1137, 2009. 44. Wu, D. C., Yu, Y. P., Lee, N. T., Yu, A. C., Wang, J. H., and Han, Y. F. The expression of Cdk5, p35, p39, and Cdk5 kinase activity in developing, adult, and aged rat brains. Neurochem Res, 25: 923-929, 2000. 45. Lin, H., Lin, T. Y., and Juang, J. L. Abl deregulates Cdk5 kinase activity and subcellular localization in Drosophila neurodegeneration. Cell Death Differ, 14: 607-615, 2007. 46. Musa, F. R., Takenaka, I., Konishi, R., and Tokuda, M. Effects of luteinizing hormone, follicle-stimulating hormone, and epidermal growth factor on expression and kinase activity of cyclin-dependent kinase 5 in Leydig TM3 and Sertoli TM4 cell lines. J Androl, 21: 392-402, 2000. 47. Musa, F. R., Tokuda, M., Kuwata, Y., Ogawa, T., Tomizawa, K., Konishi, R., Takenaka, I., and Hatase, O. Expression of cyclin-dependent kinase 5 and associated cyclins in Leydig and Sertoli cells of the testis. J Androl, 19: 657-666, 1998. 48. Ubeda, M., Kemp, D. M., and Habener, J. F. Glucose-induced expression of the cyclin-dependent protein kinase 5 activator p35 involved in Alzheimer''s disease regulates insulin gene transcription in pancreatic beta-cells. Endocrinology, 145: 3023-3031, 2004. 49. Strock, C. J., Park, J. I., Nakakura, E. K., Bova, G. S., Isaacs, J. T., Ball, D. W., and Nelkin, B. D. Cyclin-dependent kinase 5 activity controls cell motility and metastatic potential of prostate cancer cells. Cancer Res, 66: 7509-7515, 2006. 50. Lin, H., Juang, J. L., and Wang, P. S. Involvement of Cdk5/p25 in digoxin-triggered prostate cancer cell apoptosis. J Biol Chem, 279: 29302-29307, 2004. 51. Sandal, T., Stapnes, C., Kleivdal, H., Hedin, L., and Doskeland, S. O. A novel, extraneuronal role for cyclin-dependent protein kinase 5 (CDK5): modulation of cAMP-induced apoptosis in rat leukemia cells. J Biol Chem, 277: 20783-20793, 2002. 52. Chen, F., Wang, Q., Wang, X., and Studzinski, G. P. Up-regulation of Egr1 by 1,25-dihydroxyvitamin D3 contributes to increased expression of p35 activator of cyclin-dependent kinase 5 and consequent onset of the terminal phase of HL60 cell differentiation. Cancer Res, 64: 5425-5433, 2004. 53. Chen, Y. N., Sharma, S. K., Ramsey, T. M., Jiang, L., Martin, M. S., Baker, K., Adams, P. D., Bair, K. W., and Kaelin, W. G., Jr. Selective killing of transformed cells by cyclin/cyclin-dependent kinase 2 antagonists. Proc Natl Acad Sci U S A, 96: 4325-4329, 1999. 54. Liu, R., Tian, B., Gearing, M., Hunter, S., Ye, K., and Mao, Z. Cdk5-mediated regulation of the PIKE-A-Akt pathway and glioblastoma cell invasion. Proc Natl Acad Sci U S A, 105: 7570-7575, 2008. 55. Selvendiran, K., Koga, H., Ueno, T., Yoshida, T., Maeyama, M., Torimura, T., Yano, H., Kojiro, M., and Sata, M. Luteolin promotes degradation in signal transducer and activator of transcription 3 in human hepatoma cells: an implication for the antitumor potential of flavonoids. Cancer Res, 66: 4826-4834, 2006. 56. Lin, H., Chen, M. C., Chiu, C. Y., Song, Y. M., and Lin, S. Y. Cdk5 regulates STAT3 activation and cell proliferation in medullary thyroid carcinoma cells. J Biol Chem, 282: 2776-2784, 2007. 57. Kim, E., Chen, F., Wang, C. C., and Harrison, L. E. CDK5 is a novel regulatory protein in PPARgamma ligand-induced antiproliferation. Int J Oncol, 28: 191-194, 2006. 58. Feldmann, G., Mishra, A., Hong, S. M., Bisht, S., Strock, C. J., Ball, D. W., Goggins, M., Maitra, A., and Nelkin, B. D. Inhibiting the Cyclin-Dependent Kinase CDK5 Blocks Pancreatic Cancer Formation and Progression through the Suppression of Ras-Ral Signaling. Cancer Res, 70: 4460-4469, 2010. 59. Goodyear, S. and Sharma, M. C. Roscovitine regulates invasive breast cancer cell (MDA-MB231) proliferation and survival through cell cycle regulatory protein cdk5. Exp Mol Pathol, 82: 25-32, 2007. 60. Upadhyay, A. K., Ajay, A. K., Singh, S., and Bhat, M. K. Cell cycle regulatory protein 5 (Cdk5) is a novel downstream target of ERK in carboplatin induced death of breast cancer cells. Curr Cancer Drug Targets, 8: 741-752, 2008. 61. Kuo, H. S., Hsu, F. N., Chiang, M. C., You, S. C., Chen, M. C., Lo, M. J., and Lin, H. The Role of Cdk5 in Retinoic Acid-Induced Apoptosis of Cervical Cancer Cell Line. Chinese J Physiology, 52: 23-30, 2009. 62. Choi, H. S., Lee, Y., Park, K. H., Sung, J. S., Lee, J. E., Shin, E. S., Ryu, J. S., and Kim, Y. H. Single-nucleotide polymorphisms in the promoter of the CDK5 gene and lung cancer risk in a Korean population. J Hum Genet, 2009. 63. Liu, J. L., Wang, X. Y., Huang, B. X., Zhu, F., Zhang, R. G., and Wu, G. Expression of CDK5/p35 in resected patients with non-small cell lung cancer: relation to prognosis. Med Oncol, 2010. 64. Lockwood, W. W., Chari, R., Coe, B. P., Girard, L., Macaulay, C., Lam, S., Gazdar, A. F., Minna, J. D., and Lam, W. L. DNA amplification is a ubiquitous mechanism of oncogene activation in lung and other cancers. Oncogene, 27: 4615-4624, 2008. 65. Lin, H., Chen, M. C., and Ku, C. T. Cyclin-dependent kinase 5 regulates steroidogenic acute regulatory protein and androgen production in mouse Leydig cells. Endocrinology, 150: 396-403, 2009. 66. Lee, M. S., Igawa, T., and Lin, M. F. Tyrosine-317 of p52(Shc) mediates androgen-stimulated proliferation signals in human prostate cancer cells. Oncogene, 23: 3048-3058, 2004. 67. Fu, A. K., Fu, W. Y., Ng, A. K., Chien, W. W., Ng, Y. P., Wang, J. H., and Ip, N. Y. Cyclin-dependent kinase 5 phosphorylates signal transducer and activator of transcription 3 and regulates its transcriptional activity. Proc Natl Acad Sci U S A, 101: 6728-6733, 2004. 68. Gordon, V., Bhadel, S., Wunderlich, W., Zhang, J., Ficarro, S. B., Mollah, S. A., Shabanowitz, J., Hunt, D. F., Xenarios, I., Hahn, W. C., Conaway, M., Carey, M. F., and Gioeli, D. CDK9 regulates AR promoter selectivity and cell growth through serine 81 phosphorylation. Mol Endocrinol, 24: 2267-2280, 2010. 69. Gong, J., Lee, J., Akio, H., Schlegel, P. N., and Shen, R. Attenuation of apoptosis by chromogranin A-induced Akt and survivin pathways in prostate cancer cells. Endocrinology, 148: 4489-4499, 2007. 70. Fu, X., Choi, Y. K., Qu, D., Yu, Y., Cheung, N. S., and Qi, R. Z. Identification of nuclear import mechanisms for the neuronal Cdk5 activator. J Biol Chem, 281: 39014-39021, 2006. 71. Kino, T., Ichijo, T., Amin, N. D., Kesavapany, S., Wang, Y., Kim, N., Rao, S., Player, A., Zheng, Y. L., Garabedian, M. J., Kawasaki, E., Pant, H. C., and Chrousos, G. P. Cyclin-Dependent Kinase 5 Differentially Regulates the Transcriptional Activity of the Glucocorticoid Receptor through Phosphorylation: Clinical Implications for the Nervous System Response to Glucocorticoids and Stress. Mol Endocrinol, 21: 1552-1568, 2007. 72. Heery, D. M., Kalkhoven, E., Hoare, S., and Parker, M. G. A signature motif in transcriptional co-activators mediates binding to nuclear receptors. Nature, 387: 733-736, 1997. 73. Kokontis, J. M., Hay, N., and Liao, S. Progression of LNCaP prostate tumor cells during androgen deprivation: hormone-independent growth, repression of proliferation by androgen, and role for p27Kip1 in androgen-induced cell cycle arrest. Mol Endocrinol, 12: 941-953, 1998. 74. Chuu, C. P., Hiipakka, R. A., Fukuchi, J., Kokontis, J. M., and Liao, S. Androgen causes growth suppression and reversion of androgen-independent prostate cancer xenografts to an androgen-stimulated phenotype in athymic mice. Cancer Res, 65: 2082-2084, 2005. 75. Culig, Z., Hoffmann, J., Erdel, M., Eder, I. E., Hobisch, A., Hittmair, A., Bartsch, G., Utermann, G., Schneider, M. R., Parczyk, K., and Klocker, H. Switch from antagonist to agonist of the androgen receptor bicalutamide is associated with prostate tumour progression in a new model system. Br J Cancer, 81: 242-251, 1999. 76. Eder, I. E., Culig, Z., Ramoner, R., Thurnher, M., Putz, T., Nessler-Menardi, C., Tiefenthaler, M., Bartsch, G., and Klocker, H. Inhibition of LncaP prostate cancer cells by means of androgen receptor antisense oligonucleotides. Cancer Gene Ther, 7: 997-1007, 2000. 77. Haag, P., Bektic, J., Bartsch, G., Klocker, H., and Eder, I. E. Androgen receptor down regulation by small interference RNA induces cell growth inhibition in androgen sensitive as well as in androgen independent prostate cancer cells. J Steroid Biochem Mol Biol, 96: 251-258, 2005. 78. Pfeil, K., Eder, I. E., Putz, T., Ramoner, R., Culig, Z., Ueberall, F., Bartsch, G., and Klocker, H. Long-term androgen-ablation causes increased resistance to PI3K/Akt pathway inhibition in prostate cancer cells. Prostate, 58: 259-268, 2004. 79. Budihardjo, I., Oliver, H., Lutter, M., Luo, X., and Wang, X. Biochemical pathways of caspase activation during apoptosis. Annu Rev Cell Dev Biol, 15: 269-290, 1999. 80. Lu, S., Ren, C., Liu, Y., and Epner, D. E. PI3K-Akt signaling is involved in the regulation of p21(WAF/CIP) expression and androgen-independent growth in prostate cancer cells. Int J Oncol, 28: 245-251, 2006. 81. Normanno, N., De Luca, A., Maiello, M. R., Mancino, M., D''Antonio, A., Macaluso, M., Caponigro, F., and Giordano, A. Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors in breast cancer: current status and future development. Front Biosci, 10: 2611-2617, 2005. 82. Gregory, C. W., He, B., Johnson, R. T., Ford, O. H., Mohler, J. L., French, F. S., and Wilson, E. M. A mechanism for androgen receptor-mediated prostate cancer recurrence after androgen deprivation therapy. Cancer Res, 61: 4315-4319, 2001. 83. Marcelli, M., Ittmann, M., Mariani, S., Sutherland, R., Nigam, R., Murthy, L., Zhao, Y., DiConcini, D., Puxeddu, E., Esen, A., Eastham, J., Weigel, N. L., and Lamb, D. J. Androgen receptor mutations in prostate cancer. Cancer Res, 60: 944-949, 2000. 84. Shi, X. B., Ma, A. H., Xia, L., Kung, H. J., and de Vere White, R. W. Functional analysis of 44 mutant androgen receptors from human prostate cancer. Cancer Res, 62: 1496-1502, 2002. 85. Burd, C. J., Petre, C. E., Moghadam, H., Wilson, E. M., and Knudsen, K. E. Cyclin D1 binding to the androgen receptor (AR) NH2-terminal domain inhibits activation function 2 association and reveals dual roles for AR corepression. Mol Endocrinol, 19: 607-620, 2005. 86. Kokontis, J., Takakura, K., Hay, N., and Liao, S. Increased androgen receptor activity and altered c-myc expression in prostate cancer cells after long-term androgen deprivation. Cancer Res, 54: 1566-1573, 1994. 87. Veldscholte, J., Ris-Stalpers, C., Kuiper, G. G., Jenster, G., Berrevoets, C., Claassen, E., van Rooij, H. C., Trapman, J., Brinkmann, A. O., and Mulder, E. A mutation in the ligand binding domain of the androgen receptor of human LNCaP cells affects steroid binding characteristics and response to anti-androgens. Biochem Biophys Res Commun, 173: 534-540, 1990. 88. Lin, H. The versatile roles of cyclin-dependent kinase 5 in human diseases. Adaptive Medicine, 1 22-25, 2009. 89. Shi, Y., Brands, F. H., Chatterjee, S., Feng, A. C., Groshen, S., Schewe, J., Lieskovsky, G., and Cote, R. J. Her-2/neu expression in prostate cancer: high level of expression associated with exposure to hormone therapy and androgen independent disease. J Urol, 166: 1514-1519, 2001. 90. Oxley, J. D., Winkler, M. H., Gillatt, D. A., and Peat, D. S. Her-2/neu oncogene amplification in clinically localised prostate cancer. J Clin Pathol, 55: 118-120, 2002. 91. Gioeli, D., Black, B. E., Gordon, V., Spencer, A., Kesler, C. T., Eblen, S. T., Paschal, B. M., and Weber, M. J. Stress kinase signaling regulates androgen receptor phosphorylation, transcription, and localization. Mol Endocrinol, 20: 503-515, 2006. 92. Chen, S., Kesler, C. T., Paschal, B. M., and Balk, S. P. Androgen receptor phosphorylation and activity are regulated by an association with protein phosphatase 1. J Biol Chem, 284: 25576-25584, 2009. 93. Guo, Z., Dai, B., Jiang, T., Xu, K., Xie, Y., Kim, O., Nesheiwat, I., Kong, X., Melamed, J., Handratta, V. D., Njar, V. C., Brodie, A. M., Yu, L. R., Veenstra, T. D., Chen, H., and Qiu, Y. Regulation of androgen receptor activity by tyrosine phosphorylation. Cancer Cell, 10: 309-319, 2006. 94. Patrick, G. N., Zukerberg, L., Nikolic, M., de la Monte, S., Dikkes, P., and Tsai, L. H. Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration. Nature, 402: 615-622, 1999. 95. Gong, X., Tang, X., Wiedmann, M., Wang, X., Peng, J., Zheng, D., Blair, L. A., Marshall, J., and Mao, Z. Cdk5-mediated inhibition of the protective effects of transcription factor MEF2 in neurotoxicity-induced apoptosis. Neuron, 38: 33-46, 2003. 96. Lilja, L., Yang, S. N., Webb, D. L., Juntti-Berggren, L., Berggren, P. O., and Bark, C. Cyclin-dependent kinase 5 promotes insulin exocytosis. J Biol Chem, 276: 34199-34205, 2001.en_US
dc.description.abstract正常攝護腺發育及攝護腺癌演進皆受到雄性激素受體之調控。對於抑制攝護腺癌演進之策略,最常見者為雄性激素阻斷法。然而,部分腫瘤細胞終將擺脫對雄性激素的依賴並發展為雄性激素非依賴型攝護腺癌。欲研究雄性激素阻斷前後細胞內分子機制之變化,林赫老師實驗室從LNCaP細胞株篩選並建立出雄性激素非依賴的LNCaPdcc細胞株。篩選結果發現,LNCaPdcc細胞呈現了神經內分泌性(neuroendocrine)之型態及較緩慢的生長速率。即使細胞週期分佈與母系(parental) LNCaP細胞相似,但LNCaPdcc之細胞週期相關蛋白的表現卻明顯低於母系LNCaP細胞。有趣的是,在LNCaPdcc細胞中,雄性激素受體表現量及其絲胺酸(serine, Ser, S) 81位點的磷酸化有明顯增加之情形。而雄性激素受體下游調控基因—攝護腺特異抗原(prostate-specific antigen, PSA)之表現量亦有顯著增加之趨勢。此外,雄性激素受體於細胞核內之分佈及蛋白穩定性同樣有上升之現象。而雄性激素對於細胞增生的實驗則出現了相異的結果,低濃度(0.1及1 nM)的R1881(人工合成雄性激素)刺激了母系LNCaP細胞之增生,卻抑制了LNCaPdcc細胞之增生。另一方面,本人也發現比起母系LNCaP細胞,在LNCaPdcc細胞中,Her2 (ErbB2)、ErbB3、ErbB4受體之表現及Her2酪胺酸(tyrosine, Tyr, Y) 1221/1222兩個位點的磷酸化有上升之情形;heregulin (ErbB3配體)處理所導致的Her2磷酸化較高並較延遲;而Her2抑制劑(AG825及Herceptin)的處理,亦對LNCaPdcc的細胞增生造成較強的抑制效果。再者,Her2抑制劑較有效地降低LNCaPdcc細胞中雄性激素受體之穩定性和絲胺酸81位點之磷酸化。以上結果說明,在攝護腺癌細胞由雄性激素依賴轉變為非依賴的過程中,Her2對於雄性激素受體之穩定性扮演了重要角色。另一方面,Cdk5 (cyclin-dependent kinase 5)激酶與其活化蛋白p35在癌症研究中是新興的目標蛋白。第二部份的研究結果顯示在低濃度的雄性激素(0.1 nM R1881)下,Cdk5激酶會透過與雄性激素受體進行生化交互作用而磷酸化雄性激素受體上絲胺酸81的位點,進而導致雄性激素受體穩定性增加。Cdk5激酶導致的雄性激素受體穩定,造成了雄性激素受體於細胞核內的累積並活化,更進而正向調控細胞in vitro及in vivo之生長。將雄性激素受體上絲胺酸81的位點突變成丙胺酸(alanine, Ala, A),則實驗結果顯示,雄性激素受體與Cdk5激酶的交互作用受阻,於細胞核內的分佈減少,其蛋白穩定性亦降低,進而減緩攝護腺癌細胞之增生。此外,林赫老師實驗室收集了177位有雄性激素受體表現之攝護腺癌組織切片(tissue array)。免疫組織化學染色的結果指出,雄性激素受體分別與Cdk5激酶和p35之蛋白表現呈現顯著的正相關性。以上的發現說明了Cdk5激酶對於雄性激素受體活化及攝護腺癌生長之調控扮演了重要角色。綜合上述結果,本人提出了雄性激素受體蛋白穩定性及攝護腺癌細胞生長會受到Her2及Cdk5相關訊息路徑所調控之證據。期盼這些發現能為荷爾蒙抗性的攝護腺癌治療提供新的思維。zh_TW
dc.description.abstractThe normal prostate development and prostate cancer progression are mediated by androgen receptor (AR). Androgen ablation therapy is the most common strategy for suppressing prostate cancer progression; however, tumor cells eventually escape androgen dependence and progress to an androgen-independent phase. We screened and generated an androgen-independent prostate cancer cell line (LNCaPdcc) from androgen-dependent LNCaP cell line to investigate changes of molecular mechanisms before and after androgen withdrawal. We found that LNCaPdcc cells display a neuroendocrine morphology, less aggressive growth, and lower expression levels of cell cycle-related factors, although the cell cycle distribution is similar to parental LNCaP cells. Notably, higher protein expressions of AR, phospho-Ser81-AR, and PSA in LNCaPdcc cells are observed. The nuclear distribution and protein stability of AR increase in LNCaPdcc cells. In addition, cell proliferation results exhibit the biphasic nature of the androgen effect in two cell lines. Parental LNCaP cell proliferation is sensitive to synthetic androgen R1881 at limiting concentrations (0.1 and 1 nM) whereas LNCaPdcc cell proliferation is inhibited at low concentrations. On the other hand, LNCaPdcc cells express higher levels of Her2, phospho-Y1221/1222-Her2, ErbB3, and ErbB4 proteins than parental LNCaP cells. These two cell lines exhibit distinct responses to Her2 activation on Her2 phosphorylation and Her2 inhibition on cell proliferation, respectively. Heregulin-induced Her2 activation in LNCaPdcc cells is stronger and delayed. LNCaPdcc cell proliferation declines more significantly in response to Her2 inhibitors (AG825 or Herceptin). In addition, the Her2 inhibitor (AG825) more effectively cause AR degradation and diminish AR Ser81 phosphorylation in LNCaPdcc cells. Taken together, our data demonstrate that Her2 plays an important role in the support of AR protein stability in the transition of androgen requirement in prostate cancer cells. On the other hand, Cdk5 and its activator, p35, are oncoming targets in cancer research. In the second part, Cdk5 enables to phosphorylate AR at Ser81 site through direct biochemical interaction and therefore results in the stabilization of AR proteins at the low concentration of androgen (0.1 nM R1881). The Cdk5-dependent AR stabilization causes nuclear accumulation and subsequent activation of AR proteins. Besides, the positive regulations of Cdk5-AR on cell growth are also determined in vitro and in vivo. S81A mutant of AR diminishes its interaction with Cdk5, reduces its nuclear localization, fails to stabilize its protein level, and therefore decreases prostate cancer cell proliferation. Prostate carcinoma specimens collected from 177 AR-positive patients (tissue array) indicate the significant correlations between the protein levels of AR and Cdk5 or p35. These findings demonstrate that Cdk5 is an important modulator of AR activation and contributes to prostate cancer growth. In conclusion, we display the modulations of AR stability and prostate cancer growth by Her2- and Cdk5-dependent signal pathways and hope these findings will provide novel insight into the treatment of hormone-refractory prostate cancer.en_US
dc.description.tableofcontents誌謝辭 i 中文摘要 iii Abstract v Contents vii List of Figures and Tables x Abbreviation xiii Introduction 1 1. Prostate cancer 1 2. Androgen receptor 2 3. Molecular events during prostate cancer transition 4 4. Serine phosphorylation of AR 5 5. ErbB family 6 6. Growth factors/receptors-dependent AR activation 8 7. Cyclin-dependent kinase 5 /p35 9 8. Cdk5/p35 in cancers 11 9. Cdks and AR activation 13 10. Reviews of androgen-inde pendent LNCaP sublines 14 Hypothesis 17 Materials and Methods 18 Materials 18 Cell culture 19 Cell viability assay 21 Trypan blue assay 21 Analysis of cell cycle distribution 21 Immunoblotting, immunoprecipitation and fractionation analyses 22 In vitro kinase assay 23 Immunocytochemistry 24 Transfection 25 Reporter assay 25 Immunohistochemistry 26 Xenografted tumor growth in nude mice 27 Semi-quantitative RT-PCR 28 Statistics 28 Chapter I The significance of Her2 on androgen receptor protein stability in the transition of androgen requirement in prostate cancer cells 29 Results 30 Comparisons of characteristics of LNCaPdcc versus parental LNCaP cells 30 AR-related features in two cell lines 30 Her2-related features in two cell lines 31 AR stability in LNCaPdcc cells depends on high Her2 activation 32 Discussion 34 Figures 39 Supplemental Figures 47 Chapter II Chapter II Regulation of androgen receptor activation and prostate cancer growth by cyclin-dependent kinase 5 51 Results 52 The biochemical relationship between Cdk5 and AR 52 Cdk5 increases AR stability through phosphorylation 53 Cdk5 promotes AR activation 54 Cdk5 activity regulates the growth of prostate cancer cells through phosphorylating AR 55 Clinical evidence 56 Discussion 58 Figures 63 Supplemental Figures 73 Tables 81 Conclusion 83 Acknowledgements 85 References 86zh_TW
dc.subjectprostate canceren_US
dc.subjectandrogen receptoren_US
dc.subjectcell growthen_US
dc.titleInvestigating the Importance of Her2 and Cdk5-Dependent Pathways to Androgen Receptor Stability and Prostate Cancer Cell Growthen_US
dc.typeThesis and Dissertationzh_TW
item.openairetypeThesis and Dissertation-
item.fulltextwith fulltext-
Appears in Collections:生命科學系所
Files in This Item:
File Description SizeFormat Existing users please Login
nchu-100-8096052303-1.pdf11.19 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show simple item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.