Please use this identifier to cite or link to this item:
標題: 斯文豪氏攀蜥(Japalura swinhonis)的化學與視覺感知在偵測捕食者上的重要性
The roles of chemical and visual senses in detecting predators of a tree lizard(Japalura swinhonis)
作者: 陳沛妏
Chen, Pei-Wen
關鍵字: Japalura swinhonis;斯文豪氏攀蜥;chemical cue;visual cues;predator;antipredatory behavior;化學感知;視覺感知;捕食者;反捕食行為
出版社: 生命科學系所
引用: 杜銘章。2004。蛇類大驚奇。遠流出版社。 杜銘章、呂光洋、向高世。1999。台灣兩棲爬行動物圖鑒。中華民國自然生態 保育協會大自然雜誌社。 沈子如。2009。斯文豪氏攀蜥的化學感知與視覺在覓食行為上所扮演的角色。 國立東華大學自然資源管理研究所碩士論文。 林德恩、黃國峰。2004。自然保育季刊 48:51-57。 林華慶。1993。斯文豪氏攀蜥簡介。自然保育季刊 3:37-38。 林華慶、黃國峰、盧致華。1995。台灣幾種蛇類的食性記錄。野生動物保育彙 報及通訊 3(2):19-20。 李文傑、呂光洋。1996。台灣地區蛇類食性的初探。師大生物學報告 31(2):119-124。 陳韋翰。2011。台灣東北部山區不同森林環境下兩棲爬行動物組成之探討。國 立宜蘭大學自然資源學系碩士論文。 Amo, L., Lopez, P., and Martin, J. 2004a. Chemosensory recognition and behavioral responses of wall lizards, Podarcis muralis, to scents of snakes that pose different risks of predation. Copeia 3: 691–696. Amo, L., Lopez, P., and Martin, J. 2004b. Wall lizards combine chemical and visual cues of ambush snake predators to avoid overestimating risk inside refuges. Anim. Behav. 67: 647–53. Amo, L., Lopez, P.,and Martin, J. 2006. Can wall lizards combine chemical and visual cues to discriminate predatory from non-predatory snakes inside refuges? Ethology 112: 478–484. Apfelbach, R., Blanchard, C. D., Blanchard, R. J., Hayes, R.A., and McGregor, I. S. 2005. The effects of predator odors in mammalian prey species: A review of field and laboratory studies. Neurosci. Biobehav. Rev. 29: 1123–1144. Bauwens, D., and Thoen, C. 1981. Escape tactics and vulnerability to predation associated with reproduction in thelizard Lacerta vivipara. J. Anim. Ecol. 50: 733–743. Chivers, D. P., Mirza, R. S., Bryer, P. J., and Kiesecker, J. M. 2001.Threat- sensitive predator avoidance by slimy sculpins: understanding the importance of visual versus chemical information. Can. J. Zool. 79: 867–873. Cooper, W. E. 1994. Chemical discrimination by tongue-flicking in lizards: A review with hypotheses on its origin and its ecological and phylogenetic relationships. J. Chem. Ecol. 20: 439–487. Cooper, W. E., Jr., Hawlena, D., and Perez-Mellado, V. 2009. Effects of predation risk factors on escape behavior by Balearic lizards (Podarcis lilfordi) in relation to optimal escape theory. Amphib. Reptil. 30: 99– 110. Desfilis, E., Font, E., and Guillen-Salazar, F. 2003. Stimulus control of predatory behavior by the Iberian wall lizard (Podarcis hispanica, Sauria, Lacertidae): effects of familiarity with prey. J. Comp. Psychol. 117: 309–316. Dial, B. E., and Schwenk, K. 1996. Olfaction and predator detection in Coleonyx brevis (Squamata: Eublepharidae), with comments on the functional significance of buccal pulsing in geckos. J. Exp. Zool. 276: 415. Downes, S. 2002. Does responsiveness to predator scents affect lizard survivorship? Behav. Ecol. Sociobiol. 52: 38–42. Downes, S., and Shine, R. 1998. Sedentary snakes and gullible geckos: predator-prey coevolution in nocturnal rock-dwelling reptiles. Anim. Behav. 55: 1373–85. Filoramo, N. I., and Schwenk, K. 2009. The mechanism of chemical delivery to the vomeronasal organs in squamate reptiles: a comparative morphological approach. J. Exp. Zool. 311A: 20–34. Fleishman, L. J. 1992. The influence of the sensory system and the environment on motion patterns in the visual displays of Anoline lizards and other vertebrates. Am. Nat. 139: 36–61. Greene, H. W. 1989. Defensive behavior and feeding biology of the Asian mock viper, Psammodynastes pulverulentus (Colubridae), a specialized predator on scincid lizards. Chinese Herp. Res. 2: 21–32. Halpern, M. 1992. Nasal chemical senses in reptiles: structure and function. In: Gans C, Crews D, editors. Hormones, brain and behavior. Biology of the Reptilia, physiology E. Chicago: University of Chicago Press. 423– 523. Head, M. L., Keogh, J. S., and Doughty, P. 2002. Experimental evidence of an age-specific shift in chemical detection of predators in a lizard. J. Chem. Ecol. 28: 541-554. Helfman, G. S. 1989. Threat-sensitive predator avoidance in damselfish- trumpetfish interactions. Behav. Ecol. Sociobiol. 24: 47–58. Helfman, G. S., and Winkelman, D. L. 1997. Threat sensitivity in bicolor damselfish: effects of sociality and body size. Ethology 103: 369–383. Huang, W. S. 2006. Parental care in the long-tailed skink, Mabuya longicaudata on a tropical Asian island. Anim. Behav. 72: 791–795. Huang, W. S. 2007. Ecology and reproductive patterns of the agamid lizard Japalura swinhonis on an East Asian island, with comments on the small clutch sizes of island lizards. Zool. Sci. 24: 181–188. Huang, W. S. 2008. Predation risk of whole-clutch filial cannibalism in a tropical skink with maternal care. Behav. Ecol. 19: 1069–1074. Kats, L. B., and Dill, L. M. 1998. The scent of death: chemosensory assessment of predation risk by prey animals. Ecoscience. 5: 361–94. Kuo, C. Y., Lin, Y. S., and Lin, Y. K. 2007. Resource use and morphology of two sympatric Japalura lizards (Iguania: Agamidae). J. Herpetol. 41: 713-723. Labra, A., and Niemeyer, H. M. 2004. Variability in the assessment of snake predation risk by Liolaemus lizards. Ethology 110: 649–662. Lima, S. L. 1998. Stress and decision making under the risk of predation: recent developments from behavioral, reproductive, and ecological perspectives. Adv. Study. Behav. 27: 215–290. Lima, S. L., and Dill, L. M. 1990. Behavioral decisions made under the risk of predation: a review and prospectus. Can. J. Zool. 68: 619–40. Lloyd, R., Alford, R. A., and Schwarzkopf, L. 2009. Chemical discrimination among predators by lizards: responses of three skink species to the odours of high-and low-threat varanid predators. Austral. Ecol. 34: 50–4. Makaretz, M., and Levine, R. L. 1980. A light microscopic study of the bifoveate retina in the lizard Anolis carolinensis: General observations and convergence ratios. Vision Res. 20: 679–686. Mao, J. J. 2003. Population ecology of genus Sinonatrix in Taiwan, doctoral dissertation of biogeography. Trier University, Germany, pp. 157. Martin, J., and Lopez, P. 2005. Wall lizards modulate refuge use through continuous assessment of predation risk level. Ethology 111: 207–19. Martin, J., and Lopez, P. 1996. Avian predation on a large lizard (Lacerta lepida) found at low population densities in Mediterranean habitats: An analysis of bird diets. Copeia 1996: 722–726. McCarthy, T. M., and Fisher, W. A. 2000. Multiple predator-avoidance behaviours of the freshwater snail Physella heterostropha pomila: responses vary with risk. Freshwater Biol. 44: 387–397. McCormick, S., and Polis, G. A. 1982. Arthropods that prey on vertebrates. Biol. Rev. 57: 29–58. McNamara, J. M. 1996. Risk-prone behaviour under rules which have evolved in a changing environment. Am. Zool. 36: 484-495. Nonoyama, J. 1936. The distribution of taste buds on the tongue of some Reptilia. J. Sci. Hiroshima. Univ. Ser. B. 5: 57–66 Ota, H. 1991. Systematics and biogeography of terrestrial reptiles of Taiwan. Council of Agriculture, Taipei. Ota, H. 1994. Female reproductive cycles in the northernmost populations of the two gekkonid lizards, Hemidactylus frenatus and Lepidodactylus lugubris. Ecol. Res. 9:120–130. Punzo, F. 2007. Chemosensory cues associated with snake predators affect locomotor activity and tongue flick rate in the whiptail lizard, Aspidoscelis dixoni Scudday 1973 (Squamata Teiidae). Ethol. Ecol. Evol. 19: 225–235. Schwenk, K. 1985. Occurrence, distribution and functional significance of taste buds in lizards. Copeia 1985: 91–101. Shivik, J. A. 1998. Brown tree snake response to visual and olfactory cues. J. Wildlife. Manage. 62: 105–111. Skelly, D. K. 1994. Activity level and the susceptibility of anuran larvae to predation. Anim. Behav. 47: 465–8. Smith, M. E., and Belk, M. C. 2001. Risk assessment in western mosquitofish (Gambusia affinis): do multiple cues have additive effects? Behav. Ecol. Sociobiol. 51: 101–107. Stapley, J. 2003. Differential avoidance of snake odours by a lizard: evidence for prioritised avoidance based on risk. Ethology 109: 785– 796. Stone, P. A., Snell, H. L., and Snell, S. H. 1994. Behavioral diversity as biological diversity: introduced cats and lava lizard wariness. Conserv. Biol. 8: 569–573. Thoen, C., Bauwens, D., and Verheyen, R. 1986. Chemoreceptive and behavioural responses of the common lizard Lacerta vivipara to snake chemical deposits. Anim. Behav. 34: 1805–1813. Van, D. R., Bauwens, D., Thoen, C., Vanderstighelen, D., and Verheyen, R. 1995. Responses of naive lizards to predator chemical cues. J. Herpetol. 29: 38–43. Van, D. R., and Quick, K. 2001. Use of predator chemical cues by three species of lacertid lizards (Lacerta bedriagae, Podarcis tiliguerta, and Podarcis sicula). J. Herpetol. 35: 27–36. Vitt, L. J., and Carvalho, C. M. 1995. Niche partitioning in a tropical wet season: lizards in the lavrado area of northern Brazil. Copeia 1995: 305–329. Vitt, L. J., Pianka, E. R., Cooper, W. E., and Schwenk, K. 2003. History and the global ecology of squamate reptiles. Am. Nat. 162: 44–60. Webb, J. K., Pike, D. A., and Shine, R. 2009a. Olfactory recognition of predators by nocturnal lizards: safety outweighs thermal benefits. Behav. Ecol. 21: 72–77. Webb, J. K., Du, G. W., Pike, D. A., and Shine, R. 2009b. Chemical cues from both dangerous and nondangerous snakes elicit antipredator behaviours from a nocturnal lizard. Anim. Behav. 77: 1471–1478. Zhou, Z., and Jiang, Z. 2004. International trade status and crisis for snake species in China. Conserv. Biol. 18: 1386–1394.
許多動物在找尋資源的過程中,相對的也提高被捕食的風險。因此,能有效地判別出捕食者對獵物來說是一個很重要的能力。本研究測試“威脅敏感度假說”(the threat sensitivity hypothesis),認為獵物可藉由化學線索、視覺感知等線索來識別出不同威脅程度的捕食者,以降低被捕食的風險。以斯文豪氏攀蜥(Japalura swinhonis)為研究對象,探討斯文豪氏攀蜥對不同捕食風險程度蛇類的化學感知與視覺感知能力。化學感知實驗使用濾紙蒐集青蛇(Cyclophiops major)、白腹游蛇(Sinonatrix percarinata suriki)、紅斑蛇(Dinodon rufozonatum)、臭青公(Elaphe carinata)、茶斑蛇(Psammodynastes pulverulentus)之氣味,測試攀蜥對於不同威脅程度的蛇類氣味刺激下的行為反應,包含吐信、抓爬、攻擊、移動時間。視覺感知實驗則使用密封罐裝置不同威脅程度的蛇類,測試項目如同化學感知實驗。實驗結果發現,斯文豪氏攀蜥可藉由化學感知辨別出捕食者與非捕食者蛇類,判別出不同的威脅程度,支持威脅敏感度假說,而視覺感知僅能辨別出是否有蛇類存在。

Many animals locate critical resources, including water, food, mates and shelter, which typically increases their exposure to predators. In order to survive, the ability to detect the presence of predators is important. I examined tree lizards (Japalura swinhonis) responded to the odours or visual stimuli of threat snakes. I tested “the threat sensitivity hypothesis ” : prey can use chemical cues, visual cues to assessment the different level of risk by predator, and respond in a graded manner in accordance with the threat posed by the predator. To obtain snake scent, I used the filter paper impregnated with deionize water, then placed inside the shelter of the snake. The donor snakes including Chinese Green Snake (Cyclophiops major), Asiatic White-Belly Water Snake (Sinonatrix percarinata suriki), Red-banded Snake (Dinodon rufozonatum), King Rastnake (Elaphe carinata), and Mock Viper (Psammodynastes pulverulentus). In the visual cue treatment the refuge was odorless and it allowed lizards to see the snake through a glass wall. Tree lizard may assess the possible presence of different threat snakes using chemical cues, supporting the threat sensitivity hypothesis. Tree lizards couldn't to use visual cues to assessment of the different level of risk, just can only assessment whether a snake presence or not.
其他識別: U0005-2106201214542600
Appears in Collections:生命科學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.