Please use this identifier to cite or link to this item:
標題: K domain參與LMADS1同質二聚體形成的結構機制
The structural basis of K domain-mediated LMADS1 homo-dimerization
作者: 邱思瑋
Chiu, Ssu-Wei
關鍵字: LMADS1;LMADS1;K domain;homodimer;K domain;同質二聚體
出版社: 生命科學系所
引用: Angenent, G.C. and Colombo, L. (1996). Molecular control of ovule development. Trends Plant Sci. 1, 228-232. Berezin, C., F. Glaser, et al,. (2004). "ConSeq: the identification of functionally and structurally important residues in protein sequences." Bioinformatics 20(8): 1322-1324. Chuang, C-F., Running, M.P., Williams, R.W. and Meyerowitz, E.M. (1999). The PERIANTHIA geneencodes a bZIP protein involved in the determination of floral organ number in Arabidopsis thaliana. Genes Dev. 13:343-344. Coen, E.S. and Meyerowitz, E.M. (1991). The war of the whorls: genetic interactions controlling flower development. Nature. 353, 31-37. Colombo, L., Franken, J., Koetje, E., van Went, J., Dons, H.J.M., Angenent, G.C. and van Tunen, A.J. (1995). The petunia MADS box gene FBP11 determines ovule identity. Plant Cell. 7, 1859-1868. Kaufmann, K., Melzer, R., and Theissen, G. (2005). MIKC-type MADSdomain proteins: Structural modularity, protein interactions and network evolution in land plants. Gene 347: 183-198. Kelley LA and Sternberg MJE. (2009). “Protein structure prediction on the web: a case study using the Phyre server.” Nature Protocols 4, 363 - 371 Liu, Z. and Meyerowitz, E.M. (1995). LEUNIG regulates AGAMOUS expression in Arabidopsis flowers. Development 121:975-991. Lupas, A., Van Dyke, M., and Stock, J. (1991) Predicting Coled Coils from Protein Sequences, Science 252:1162-1164. N. Eswar, M. A. Marti-Renom, B. Webb, M. S. Madhusudhan, D. Eramian, M. Shen, U. Pieper, A. Sali. (2006). Comparative Protein Structure Modeling With MODELLER. Current Protocols in Bioinformatics, John Wiley & Sons, Inc., Supplement 15, 5.6.1-5.6.30. Pelaz, S., Ditta, G.S., Baumann, E., Wisman, E. and Yanofsky, M.F. (2000). B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature. 405, 200-203. P.V.Konarev, V.V.Volkov, A.V.Sokolova, M.H.J.Koch and D. I. Svergun. (2003). PRIMUS - a Windows-PC based system for small-angle scattering data analysis. J Appl Cryst. 36, 1277-1282. Riechmann, J.L. and Meyerowitz E.M. (1997). MADS domain proteins in plant development. Biol Chem. 378, 1079-1101. Schuck, P. (2000). "Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling." Biophys. J. 78(3): 1606-19. Schuck, P. (2003). "On the analysis of protein self-association by sedimentation velocity analytical ultracentrifugation." Anal. Biochem. 320(1): 104-24. Schuck, P. et al., (2002). "Size-distribution analysis of proteins by analytical ultracentrifugation: strategies and application to model systems." Biophys. J. 82(2): 1096-111. Svergun D.I. (1992) Determination of the regularization parameter in indirect-transform methods using perceptual criteria. J. Appl. Crystallogr. 25, 495-503 Svergun D.I. (1999). Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing. Biophys J. 2879-2886. Theisen, G. (2001). Development of floral organ identity: stories from the MADS house. Curr. Opin. Plant Biol. 4, 75-85. Theisen, G. and Saedler, H. (1999). The golden decade of molecular floral development (1990-1999): a cheerful obituary. Developmental genetics. 25: 181-193 Theissen, G. and H. Saedler. (2001). "Plant biology. Floral quartets." Nature 409(6819): 469-71.. Tzeng, T-Y. and Yang, C-H. (2001). A MADS box gene from lily (Lilium longiflourm) is sufficient to generate dominant negative mutation by interaction with PISTILLATA (PI) in Arabidopsis thaliana. Plant Cell Physiol. 42,1156-1168 Tzeng, T-Y., Liu, H-C. and Yang, C-H. (2004). The C-terminal sequence of LMADS1 is essential for the formation of homodimers for B function proteins. JBC. 279, 10747-10755 V. V. Volkov and D. I. Svergun. (2003). Uniqueness of ab-initio shape determination in small-angle scattering. J. Appl. Cryst. 36, 860-864. Willy Wriggers. (2010). Using Situs for the Integration of Multi-Resolution Structures. Biophysical Reviews. Vol. 2, pp. 21-27. Willy Wriggers and Pablo Chacon. (2001). Using Situs for the Registration of Protein Structures with Low-Resolution Bead Models from X-ray Solution Scattering. J. Appl. Cryst. Vol. 34, pp. 773-776. Winter, K.U., Weiser, C., Kaufmann, K., Bohne, A., Kirchner, C., Kanno, A., Saedler, H. and Theisen, G. (2002). Evolution of class B floral homeotic proteins: obligate heterodimerization originated from homodimerization. Mol. Biol. Evol. 19:587-596. Yang, Y. and Jack, T., (2004). Defining subdomains of the K domain important for protein-protein interactions of plant MADS proteins. Plant Mol. Biol. 55, 45-59. Yang, Y., Fanning, L. and Jack, T. (2003-a).The K domain mediates heterodimerization of the Arabidopsis floral organ identity proteins,APETALA3 and PISTILLATA. The Plant Journal. 33, 47-59 Yang, Y., Xiang, H. and Jack, T. (2003-b). Pistillata-5, an Arabidopsis B class mutant with strong defects in petal but not in stamen development. Plant J. 33, 177-188

MADS box基因會轉譯出轉錄因子來調控植物的發育,尤其是花器的發育。MIKC type的MADS box 轉錄因子具有四個domains,分別為:MADS DNA-binding domain (M domain),intervening domain (I domain), Keratin-like domain (K domain), and C-terminal domain (C domain)。MIKC type的MADS box 蛋白質會形成同質二聚體 (homodimer)或異質二聚體 (heterodimer)來進行基因調控。晶體結構顯示,M domain是以二聚體型式結合上DNA,而一般認為K domain負責蛋白質間的交互作用,並不清楚是否參與二聚體的形成。LMADS1 (Lily MADS box gene 1) 是從鐵砲百合 (Lilium longiflorum) 中選殖出的,為MIKC type MADS-box 基因。先前研究指出LMADS1蛋白能夠形成同質二聚體,我們試圖了解LMADS1形成同質二聚體的結構機制。從分析型超高速離心 (analytical ultra-centrifugation, AUC) 實驗與小角度X光散射 (small angle X-ray scattering, SAXS) 實驗得知,LMADS1的K domain 可以在沒有M domain的情況下形成二聚體。而且,K domain上的突變R136C和K119M具有降低LMADS1二聚體之能力。這些發現說明了K domain應參與LMADS1形成同質二聚體。我們並利用定點突變與AUC實驗找出K domain上影響二聚體形成之關鍵胺基酸。這項研究將有助於我們了解MIKC type的MADS box 轉錄因子如何透過二聚體的形成來調控植物的發育。


MADS box gene encode transcription factors to regulate plant development, especially the formation of flower organs. MIKC type MADS box transcription factors contain four domains: MADS DNA-binding domain (M domain), intervening domain (I domain), Keratin-like domain (K domain), and C-terminal domain (C domain). MIKC type MADS box proteins can form homo- or heterodimer to regulate gene expression. X-ray structural studies showed dimeric M domain is crucial for DNA binding. Although K domain is suggested as a protein interaction domain, its role in dimerization remains unclear. Lily MADS box gene 1 (LMADS1) is a MIKC type MADS box gene from Lilium longiflorum. Because previously studies showed LMADS1 can form homodimer, we try to identify the structural determinant of homo-dimerization in LMADS1. Small angle X-ray scattering (SAXS) analysis together with analytical ultracentrifugation (AUC) analysis revealed that K-domain of LMADS1 can dimerize in solution in the absence of M domain. Mutations on K domain (R136C and K119M) would reduce LMADS1 dimerization. These findings support the idea that K domain is involved in LMADS1 homo-dimerization. We also identified those important amino acid residues on K domain for dimerization by using mutagenesis and AUC analysis. This study would be very helpful for understanding the gene regulation of MADS box transcription factors via dimerization
其他識別: U0005-2208201112011700
Appears in Collections:生命科學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.