Please use this identifier to cite or link to this item:
標題: 低溫沈積二氧化矽(Silica)和鋯鈦酸鉛(PZT)複合 薄膜於Cu/PI 可撓性基板之研究
Fabrication of Silica and PZT Composite Films on Cu/PI Flexible Substrates
作者: 薛竣鴻
Hsueh, Chun-Hung
關鍵字: Flexible Electronic, Flexible Substrate, silica-PZT composite film, power output, sol-gel technique;軟性電子、可撓性基板、鋯鈦酸鉛二氧化矽複合膜、共振電壓、溶膠-凝膠技術、微發電機
出版社: 機械工程學系所
引用: 參考文獻 1. Y. Sun, J. A. Rogers, 2007, “Inorganic Semiconductors for Flexible Electronics,” Advance Materials, 19, 1897-1916 2. J. Whitmarsh, 2005, “Flexible electronics: silicon meets paper and beyond,” Microelectronics International, 22, 16-19 3. S. A. Shabalovskaya, 2001, “Physicochemical and Biological Aspects of Nitinol as a Biomaterial,” International Materials Reviews, 46, 233-250 4. C. Mavroidis, 2002, “Development of advanced actuators using shape memory alloys and electrorheological fluids,” Research in Nondestructive Evaluation, 14, 1-32 5. S. B. Patil, V. Chu, J. P. Conde, 2008, “Performance of Thin Film Silicon MEMS on Flexible Plastic Substrates,” Sensors and Actuators A, 144, 201-206 6. An Electrostatic Fringing-Field Actuator (EFFA): Application towards a Low-Complexity Thin-Film RF-MEMS Technology, 2007,” Journal of Micromechanics and Microengineering, 17, 204-210 7. K. Tajima, Y. Yamada, S. Bao, M. Okada, K. Yoshimura, 2008, “All-Solid-State Switchable Mirror on Flexible Sheet,” Surface and Coatings Technology, 202, 5633-5636 8. E. Smela, 2003, “Conjugated Polymer Actuators for Biomedical Applications,” Advance Materials, 15, 481-494 9. Electroactive Polymer (EAP) Actuators as Artificial Muscles: Reality, Potential, and Challenges, 2001, SPIE Press, Bellingham 10. G.. G. Wallace, G. M. Spinks, P. R. Teasdale, Conductive Electroactive Polymers: Intelligent Materials Systems, Technomic, Lancaster, UK, 1997 11. D. J. Beebe, J. S. Moore, J. M. Bauer, Q. Yu, R. H. Liu, C. Devadoss, B. H. Jo, 2000, “Functional hydrogel structures for autonomous flow control inside microfluidic channels,” Nature, 404, 588 12. S.-K. Lee, Y. Choi, W.-Y. Sim, S.-S. Yang, H.-J. An, J. J. Pak, 2000, “Fabrication of electro-active polymer actuator composed of polypyrrole and solid-polymer electrolyte and its application to micropump,” Proceedings of SPIE - The International Society for Optical Engineering, 3987, 291-299 13. S. Tung, S. R. Witherspoon, L. A. Roe, A. Silano, D. P. Maynard, N. Ferraro, 2001, “A MEMS-Based Flexible Sensor and Actuator System for Space Inflatable Structures,” Smart Material Structure, 10, 1230-1239 14. T. Sugimoto, K. Ono, A. Ando, K. Kurozumi, A. Hara, Y. Morita, and A. Miura, 2009, “Loudspeakers for flexible displays,” Acoustical Science and Technology, 30, 151-153 15. P. Ueberschlag, 2001, “PVDF Piezoelectric Polymer,” Sensor Review, 21, 118-125 16. C.-H. Chuang, W.-B. Dong, W.-B. Lo, 2008, “Flexible piezoelectric tactile sensor with structural electrodes array for shape recognition system,” Proceedings of the 3rd International Conference on Sensing Technology, 504-507 17. K. Itoigawa, H. Ueno, M. Shiozaki, T. Toriyama, S. Sugiyyama, 2005, “Fabrication of flexible thermopile generator,” Journal of Micromechanics and Microengineering, 15, 233-238 18. W. Glatz, C. Hierold, 2007, “Flexible micro thermoelectric generator,” Proceedings of Future Generation Communication and Networking, FGCN 2007, 2, 89-92 19. E. Schwyter, W. Glatz, L. Durrer, C. Hierold, 2008, “Flexible micro thermoelectric generator based on electroplated B1 2+xTe3-x,” DTIP of MEMS and MOEMS - Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS, 46-48 20. L. Wang, F. G. Yuan, 2008, “Vibration energy harvesting by magnetostrictive material,” Smart Materials and Structures, 17, 1-14 21. E. Klimiec, W. Zaraska, K. Zaraska, K. P. Gasiorski, T. Sadowski, M. Pajda, 2008, “Piezoelectric polymer films as power converters for human powered electronics,” Microelectronics Reliability, 48, 897-901 22. J. Granstrom, J. Feenstra, H. A. Sodano, K. Farinholt, 2007, “Energy harvesting from a backpack instrumented with piezoelectric shoulder straps,” Smart Materials and Structures, 16, 1810-1820 23. M. Kobayashi, C.-K. Jen, D. L

本論文利用溶膠-凝膠技術將鋯鈦酸鉛奈米顆粒分散於二氧化矽溶液中,以旋鍍的方式低溫150℃沉積鋯鈦酸鉛二氧化矽複合膜於銅/聚醯亞胺可能性基板。表面觀測分別利用光學顯微鏡與影像處理軟體(IMAGE-J)對薄膜正面進行巨觀觀測及場發電子顯微鏡則用來對薄膜正面進行微觀觀測。在XRD量測方面,複合膜之鋯鈦酸鉛<101><110>晶格強度達300。電滯曲線量測方面,飽和電場178kV/cm、殘留極化量5.76μc/cm2及矯頑電場58.2kV/cm。LCR量測方面,薄膜電容值為0.028nF,但在100 Hz內有較大之漏電流現象。
本論文也利用鋯鈦酸鉛二氧化矽複合膜發展微型可撓性發電裝置。將發電元件製成懸臂樑形式,利用激振器激發懸臂樑的第一共振模態產生最大振幅。首先利用有限元素法分析微發電機結構之第一共振模態,本論文還利用實驗量測發電元件的模態並與有限元素分析結果比對。最後量測10mmx10mm發電元件之共振電壓達420 mV peak to peak。

Flexible Electronic systems have received increasing attention in the last decades because they are light weight, low power consumption, comfortable, flexible and rollable. However, micro fabrication process using Si and glass substrate couldn't satisfy these requirements. In the research of flexible electronics, the field of flexible micro generator also play a key role. Among several micro generator, Lead Zirconate Titanate (PZT or PbZr1-xTixO3) is a piezoelectric material which has the strength of high frequency bandwidth, fast response, and high sensitivity.
This paper use sol-gel technique to deposit silica and PZT composite film on Cu/PI flexible structure at 150℃. First, PZT nanoparticles are dispersed in SiO2 sol. SiO2 sols with different concentrations of PZT particles are spin coated on Cu/PI substrates, and then sintered at 150℃ to form silica-PZT composite films. In order to check film's quality, imaging software, IMAGE-J, is used to study the distribution of PZT nanoparticles in the composite films. In XRD measurement, the intensity of PZT<101><110> can reach 300 for silica-PZT film. with low concentration of PZT particles. In the P-E hysteresis measurement, the saturation poling field is 178kV/cm. Remnant polarization is 5.76μc/cm2 and coercive field is 58.2kV/cm. In the LCR measurement, the capacitance of silica-PZT composite film is 0.028nF at 1 kHz. However, silica-PZT composite films have large dielectric loss at the frequency below 100Hz. It might result to the crack of SiO2 layer. Fabricated Silica-PZT composite films then are implemented into micro power generator application. The power generator is designed in the form of cantilever beam and excited at first resonance mode to generator maximum vibration amplitude. Finally, power output is 420 mV peak to peak when the electrode is 10mmx10mm.
其他識別: U0005-2907200911034900
Appears in Collections:機械工程學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.