Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/2394
標題: 一個多床吸附式熱泵操作時最佳模式時間之研究
An Investigation of the Optimum Mode Times for a Multi-bed Adsorption Heat Pump
作者: 林威億
Lin, Wei-Yi
關鍵字: adsorption heat pump;吸附式熱泵;COP;specific cooling power;second-law efficiency;冷卻性能係數;冷卻能力;第二定律效率
出版社: 機械工程學系所
引用: 1. F. Meunier, “Solid sorption heat powered cycles for cooling and heat pumping applications”, Applied Thermal Engineering, Vol. 18, pp. 715-729, 1998. 2. N.C. Srivastava, I.W. Eames, “A review of adsorbents and adsorbates in solid-vapour adsorption heat pump systems”, Applied Thermal Engineering, Vol. 18, pp. 707-714, 1998. 3. S.G. Wang, R.Z. Wang, X.R. Li, “Research and development of consolidated adsorbent for adsorption systems”, Renewable Energy, Vol. 30, pp. 1425-1441, 2005. 4. L. Yong, K. Sumathy, “Review of mathematical investigation on the closed adsorption heat and cooling systems”, Renewable and Sustainable Energy Reviews, Vol. 6, pp. 305-337, 2002. 5. G. Cacciola, G. Restuccia, “Reversible adsorption heat pump: a thermodynamic model”, International Journal of Refrigeration, Vol. 18, pp.100-106, 1995. 6. G. Cacciola, A. Hajji, G. Maggio, G. Restuccia, “Dynamic simulation of a recuperative adsorption heat pump”, International Journal Energy, Vol. 11, pp. 1125-1137, 1993. 7. J.Y. Wu, R.Z. Wang, Y.X. Xu, “Dynamic analysis of heat recovery process for a continuous heat recovery adsorption heat pump”, Energy Conversion and Management, Vol. 43, pp. 2201-2211, 2002. 8. D. Wang, J. Wu, H. Shan, R. Wang, “Experimental study on the dynamic characteristics of adsorption heat pumps driven by intermittent heat source at heating mode”, Applied Thermal Engineering, Vol.25, pp. 927-940, 2005. 9. N. Ben Amar, L.M. Sun, F. Meunier, “Numerical analysis of adsorptive temperature wave regenerative heat pump”, Applied Thermal Engineering, Vol. 16, pp. 405-418, 1996. 10. B.K. Sward, M.D. LeVan, F. Meunier, “Adsorption heat pump modeling: the thermal wave process with local equilibrium”, Applied Thermal Engineering, Vol. 20, pp. 759-780, 2000. 11. L.M. Sun, Y. Feng, M. Pons, “Numerical investigation of adsorptive heat pump systems with thermal wave heat regeneration under uniform-pressure conditions”, International Journal Heat Mass Transfer, Vol. 40, pp. 281-293, 1997. 12. W. Zheng, W.M. Worek, G. Nowakowski, “Effect of design and operating parameters on the performance of two-bed sorption heat pump systems”, Journal of Energy Resources Technology, Vol. 117, pp. 67-74, 1995. 13. W. Zheng, W.M. Worek, “Performance of multi-bed sorption heat pump system”, International Journal of Energy Research, Vol. 20, pp. 339-350, 1996. 14. M.H. Chahbani, J. Labidi, J. Paris, “Effect of mass transfer kinetics on the performance of adsorptive heat pump systems”, Applied Thermal Engineering, Vol. 22, pp. 23-40, 2002. 15. M.H. Chahbani, J. Labidi, J. Paris, “Modeling of adsorption heat pumps with heat regeneration”, Applied Thermal Engineering, Vol. 24, pp. 431-447, 2004. 16. Y. Liu, K.C. Leong, “The effect of operating conditions on the performance of zeolite/water adsorption cooling systems”, Applied Thermal Engineering, Vol. 25, pp. 1403-1418, 2005. 17. R.Z. Wang, Y.X. Xu, J.Y. Wu, W. Wang, “Experiments on heat-regenerative adsorption refrigeration and heat pump”, International Journal of Energy Research, Vol. 22, pp. 935-941, 1998. 18. R.Z. Wang, J.Y. Wu, Y.X. Xu, Y. Teng, W. Shi,“Experiment on a continuous heat regenerative adsorption refrigerator using spiral plate heat exchanger as adsorbers”, Applied Thermal Engineering, Vol. 18, pp. 13-23, 1998. 19. J.Y. Wu, R.Z. Wang, Y.X. Xu, “Influence of adsorption and desorption capacity on operating process for adsorption heat pump” Applied Thermal Engineering, Vol. 22, pp. 471-476, 2002. 20. I.I. El-Sharkawy, K. Kuwahara, B.B. Saha, S. Koyama, K.C. Ng, “Experimental investigation of activated carbon fibers/ethanol pairs for adsorption cooling system application”, Applied Thermal Engineering, Vol. 26, pp. 859-865, 2006. 21. X.D. Yang, Q.R. Zheng, A.Z. Gu, X.S. Lu, “Experimental studies of the performance of adsorbed natural gas storage system during discharge”, Applied Thermal Engineering, Vol. 25, pp. 591-601, 2005. 22. M. Pons, D. Laurent, F. Meunier, “Experimental temperature fronts for adsorptive heat pump applications”, Applied Thermal Engineering, Vol. 16, pp. 395-404, 1996. 23. D. Stitou, N. Mazet, M. Bonnissel, “Performance of a high temperature hydrate solid/gas sorption heat pump used as topping cycle for cascaded sorption chillers”, Energy, Vol. 29, pp. 267-285, 2004. 24. S.W. Wang, Z.Y. Liu, “A new method for preventing HP from frosting”, Renewable Energy, Vol. 30, pp. 753-761, 2005. 25. J.Y. San, “Analysis of the performance of a multi-bed adsorption heat pump using a solid-side resistance model”, Applied Thermal Engineering, Vol. 26, pp. 2219-2227, 2006. 26. S. Szarzynski, Y. Feng, M. Pons, “Study of different internal vapor transports for adsorption cycles with heat regeneration”, International Journal of Refrigeration, Vol.20, pp. 390-401, 1997. 27. R.G. Oliveira, V. Silveira, R.Z. Wang, “Experimental study of mass recovery adsorption cycle for ice making at low generation temperature”, Applied Thermal Engineering, Vol. 26, pp. 303-311, 2006. 28. M. Tokarev, L. Gordeeva, V. Romannikov, I. Glaznev, Y. Aristov, “New composite sorbent in mesopores for sorption cooling/heating”, International Journal of Thermal Sciences, Vol. 41, pp. 470-474, 2002. 29. Y.I. Aristov, M.M. Tokarev, G. Cacciola, G. Restuccia, “Selective water sorbents for multiple applications, 1. confined in mesopores of silica gel sorption properties”, Reaction Kinetics and Catalysis Letters, Vol. 59, pp. 325-333, 1996. 30. Y.I. Aristov, G. Restuccia, G. Cacciola, V.N. Parmon, “A family of new working materials for solid sorption air conditioning systems”, Applied Thermal Engineering, Vol. 22, pp. 191-204, 2002. 31. Y.I. Aristov, I.S. Glaznev, A.A. Freni, G. Restuccia, “Kinetics of water sorption on SWS-1L (calcium chloride confined to mesoporous silica gel): Influence of grain size and temperature”, Chemical Engineering Science, Vol. 61, pp. 1453-1458, 2006. 32. M.A. Alghoul, M.Y. Sulaiman, B.Z. Azmi, M.A. Wahab, “Advances on multi-purpose solar adsorption systems for domestic refrigeration and water heating”, Applied Thermal Engineering , Vol. 27, pp. 813-822, 2007. 33. M.A. Lambert, “Design of solar powered adsorption heat pump with ice storage”, Applied Thermal Engineering, Vol. 27, pp. 1612-1628, 2007. 34. M.A. Lambert, A. Beyene, “Thermo-economic analysis of solar powered adsorption heat pump”, Applied Thermal Engineering, Vol. 27, pp. 1593-1611, 2007. 35. 林瑋旻,吸附配對之特性對熱泵性能之影響,碩士論文,中興大學機械所,2006. 36. J.Y. San, W.M. Lin, “Comparison among three adsorption paris for using as the working substances in a multi-bed adsorption heat pump”, Applied Thermal Engineering, Vol. 28, pp. 988-997, 2008. 37. A. Freni, F. Russo, S. Vasta, M. Tokarev, Y.I. Aristov, G. Restuccia, “An advanced solid sorption chiller using SWS-1L”, Applied Thermal Engineering, Vol. 27, pp. 2200-2204, 2007. 38. R.Z. Wang, “Efficient adsorption refrigerators integrated with heat pipes”, Applied Thermal Engineering, Vol. 28, pp. 317-326, 2008. 39. 林俊宏,一個多床吸附式熱泵在非等模式操作時間下之性能,碩士論文,中興大學機械系,2008. 40. 許惠琦,以SWS-1L複合吸附劑/水為工作配對之一個吸附式熱泵之性能分析,碩士論文,中興大學機械系,2007. 41. J.Y. San, H.C. Hsu,“ Performance of a multi-bed adsorption heat pump using SWS-1L composite adsorbent and water as the working pair”, Applied Thermal Engineering, Vol. 29, pp. 1606-1613, 2009. 42. D.M. Ruthven, Principles of Adsorption, Chapter 3, Wiley, 1984. 43. J.M. Smith, H.C. Van Ness, M.M. Abbott, Chemical Engineering Thermodynamics (sixth edition), Chapter 4, McGraw-Hill, 2001. 44. J.Y. San, Exergy Analysis of Desiccant Cooling System, doctoral dissertation, University of Illinois-Chicago, 1985. 45. K.J. Sladek, E.R. Gilliland, R.F. Baddour, “Diffusion on surface. II.Correlation of diffusivities of physically and chemically adsorbed species”, Industrial and Engineering Chemistry Fundamentals, Vol. 13, pp. 100-105, 1974. 46. 吳良箴,雙塔式活性碳吸附系統對甲苯吸附性能之模擬分析,碩士論文,中興大學機械系,1996. 47. Y. Hirota, Y. Sugiyama, M. Kubota, F. Watanabe, N. Kobayashi, M. Hasatani,M. Kanamori,“Development of a suction-pump-assisted thermal and electrical hybrid adsorption heat pump”, Applied Thermal Engineering, Vol. 28, pp. 1687-1693, 2008. 48. K. Daou, R.Z. Wang, G.Z. Yang, Z.Z Xia,“Theoretical comparison of the refrigerating performances of a impregnated composite adsorbent to those of the host silica gel”, International Journal of Thermal Sciences, Vol. 47,pp. 68-75,2008.
摘要: 
本研究以電腦分析一個多床吸附式熱泵在非等模式時間操作下之冷卻性能係數(COP)與冷卻能力(Qscp),在所考慮之操作中,吸附時間等於再生時間,預熱時間等於預冷時間,但吸附/再生時間乃長於預熱/預冷時間,研究中同時探討在冷卻能力為最大值(Qscp,max)下週期循環中四個模式之操作時間,並計算系統在此最大冷卻能力操作下之第二定律效率((ηII)scp,max)。分析中使用具固體側質傳阻抗之模式,吸附劑與冷媒分別為SWS-1L 複合吸附劑與水。分析之結果顯示,對一個固定之週期時間而言,Qscp,max乃發生於最短可接受之預熱操作時間(τpreh,min)之情況下。隨著整體熱傳係數(U)、蒸發溫度(TE)與再生溫度(TG)之增大,系統之Qscp與COP 值會明顯地增加,而在Qscp值為最大時之週期時間與τpreh,min則會縮短。本研究並藉由以熱力學第二定律原理計算所得之平均再生溫度,而得到系統之第二定律效率,分析之結果顯示,(ηII)scp,max值會隨著週期時間之增長而上升,同時隨著U 值之增加而增大。在週期時間較短時,(ηII)scp,max值會隨著TG與TE值之增加而增大;但在週期時間較長時,(ηII)scp,max值會隨著TG與TE值之上升而下降。

This work analyzed the COP and specific cooling power (Qscp)of a multi-bed adsorption heat pump under an unequal-mode-time operation.In the operation, the adsorption time equals the regeneration time and the preheating time equals the precooling time. But the adsorption/regeneration time is longer than the preheating/precooling time. The operating times of the four modes at the maximum specific cooling power (Qscp,max) were investigated. In addition, the second-law efficiency ((ηII)scp,max) at the Qscp,max was evaluated. A solid-side mass diffusion resistance model was used. A SWS-1L composite adsorbent and water were the adsorption pair. The result shows that, for a fixed cycle time, the Qscp,max occurs at the minimum acceptable preheating time (τpreh,min) . As the overall heat transfer coefficient (U), evaporating temperature (TE) and regeneration temperature (TG) increase, both the Qscp value and COP value apparently increase, while the cycle time and τpreh,min value at the Qscp,max decrease. A second-law based average regeneration temperature was used to evaluate the second-law efficiency. The result reveals that the (ηII)scp,max value increases with the cycle time and the U value. At short cycle times, the (ηII)scp,max value increases with the TG value and TE value; at long cycle times, the (ηII)scp,max value decreases with an increase of the TG value and TE value.
URI: http://hdl.handle.net/11455/2394
其他識別: U0005-3107200923051700
Appears in Collections:機械工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.