Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/2398
標題: 利用雙十字型微流道交替生成乳化液滴可視化實驗
Alternative Droplet Emulsions in Double Cross Microchannel Flow
作者: 簡百駿
Chien, Pai-Chun
關鍵字: Microchannel;微流道;Droplet;Emulsion;Alternative;乳化液滴;交替
出版社: 機械工程學系所
引用: 1. Anderson J. R., Chiu D. T., Jackman R. J., Cherniavskaya O., McDonald J. C., Wu H. K., Whitesides S. H., and Whitesides G. M., “Fabrication of Topologically Complex Three-Dimensional Microfluidic Systems in PDMS by Rapid Prototyping,” Analytical Chemestry, Vol. 72, 2000, 3158-3164. 2. Agrestia J. J., Antipov E., Abatea A. R., Ahna K., Rowata A. C., Barete J. C., Marquezf M., Klibanovc A. M., Griffithse A. D., and Weitza D. A., “Ultrahigh-Throughput Screening in Drop-Based Microfluidics for Directed Evolution,” Proceedings of the National Academy of Sciences, Vol. 107, 2010, 4004-4009. 3. Brackbill J. U., Kothe D. B., and Zemach C., “A Continuum Method for Modeling Surface Tension,” Journal of Computational Physics, Vol. 100, 1992, pp. 335-354. 4. Chatterjee D., Hetayothin B., Wheeler A. R., Kingb D. J., and Garrell R. L., “Droplet-Based Microfluidics With Nonaqueous Solvents and Solutions,” Lab on a Chip, Vol. 6, 2006, 199-206. 5. Choi C. H., Jung J. H., Rhee Y. W., Kim D. P., Shim S. E., and Lee C. S., “Generation of Monodisperse Alginate Microbeads and In Situ Encapsulation of Cell in Microfluidic Device,” Biomedical Microdevices, Vol. 9, 2007, 855-862. 6. Collins J., and Lee A. P., “Control of Serial Microfluidic Droplet Size Gradient by Step-Wise Ramping of Flow Rates,” Microfluidics and Nanofluidics, Vol. 3, 2007, 19-25. 7. Cygan Z. T., Cabral J. T., Beers K. L., and Amis E. J., “Microfluidic Platform for the Generation of Organic-Phase Microreactors,” Langmuir, Vol. 21, 2005, 3629-3634. 8. Ďaďo S., “Tissue Morphology and Cell Impedance Based Biosensors for Toxicity Testing,” Measurement Science Review, Vol. 9, No. 4, 2009, 105-108. 9. Daviesb D. E., and Morgan H., “Leukocyte Analysis and Differentiation Using High Speed Microfluidic Single Cell Impedance Cytometry,” Lab on a Chip, Vol. 9, 2009, 2881-2889. 10. Demirci U., and Montesano G., “Cell Encapsulating Droplet Vitrification,” Lab on a Chip, Vol. 7, 2007, 1428-1433. 11. El-Ali J., Sorger P. K., and Jensen K. F., “Cells on Chips,” Nature, Vol. 442, 2006, 403-411. 12. Garstecki P., Fuerstman M. J., Stonec H. A., and Whitesides G.. M., “Formation of Droplets and Bubbles in a Microfluidic T-junction—Scaling and Mechanism of Break-up,” Lab on a Chip, Vol. 6, 2006, 437-446. 13. Hashimoto M., Garstecki P., and Whitesides G.. M., “Synthesis of Composite Emulsions and Complex Foams with the Use of Microfluidic Flow-Focusing Devices,” Small, Vol. 3, 2007, 1792-1802. 14. Holmes D., and Morgan H., “Single Cell Impedance Cytometry for Identification and Counting of CD4 T-Cells in Human Blood Using Impedance Labels,” Analytical Chemistry, Vol. 82, No. 4, 2010, 1455-1461. 15. Li W., Nie Z., Zhang H., Paquet C., Seo M., Garstecki P., and Kumacheva E., “Screening of the Effect of Surface Energy of Microchannels on Microfluidic Emulsification,” Langmuir, Vol. 23, 2007, 8810-8014. 16. Link D. R., Anna S. L., Weitz D. A., and Stone H. A., “Geometrically Mediated Breakup of Drops in Microfluidic Devices,” Physical Review Letters, Vol. 92, 2004, 054053-1-4. 17. Hirt C. W., and Nichols B. D., “Volume of Fluid (VOF) Method for the Dynamic of Free Boundaries,” Journal of Computation Physics, No. 39, 1981, 210-225. 18. Huebner A., Sharma S., Srisa-Art M., Hollfelder F., Edel J. B., and deMello A. J., “Microdroplets: A sea of Applications,” Lab on a Chip, Vol. 8, 2008, 1244-1254. 19. Hung L. H., Choi K. M., Tseng W. Y., Tan Y. C., Shea K. J., and Lee A. P., “Alternating Droplet Generation and Controlled Dynamic Droplet Fusion in Microfluidic Device for CdS Nanoparticle Synthesis,” Lab on a Chip, Vol. 6, 2006, 174-178. 20. Kobayashi I., Uemura K., and Nakajima M., “Formulation of Monodisperse Emulsions using Submicron-Channel Arrays,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 296, 2007, 285-289. 21. Köster S., Angilè F. E., Duan H., Agresti J. J., Wintner A., Schmitz C., Rowat A. C., Merten C. A., Pisignano D., Griffithsc A. D., and Weitz D. A., “Drop-Based Microfuidic Devices for Encapsulation of Single Cells,” Lab on a Chip, Vol. 8, 2008, 1110-1115. 22. McDonald J. C., Duffy D. C., Anderson J. R., Chiu D. T., Wu H. K., Schueller O. J. A., and Whitesides G. M., “Fabrication of Microfluidic Systems in Poly(Dimethylsiloxane),” Electrophoresis, Vol. 21, 2000, 27-40. 23. Saeki D., Sugiura S., Kanamori T., Sato S., Mukataka S., and Ichikawa S., “Highly Productive Droplet Formation by Anisotropic Elongation of a Thread Flow in a Microchannel,” Langmuir, Vol. 24, 2008, 13809-13813. 24. Seo M., Paquet C., Nie Z., Xu S., and Kumacheva E., “Microfluidic Consecutive Flow-Focusing Droplet Generators,” Soft Matter, Vol. 3, 2007, 986-992. 25. Song H., and Ismagilov R. F., “Millisecond Kinetics on a Microfluidic Chip using Nanoliters of Reagents,” Journal of the American Chemical Society, 2003, 14613-14619. 26. Tan Y. C., Cristini V., and Lee A. P., “Monodispersed Microfluidic Droplet Generation by Shear Focusing Microfluidic Device,” Sensors and Actuators B, Vol. 114, 2006, 350-356. 27. Teh S. Y., Lin R., Hung L. H., and Lee A. P., “Droplet Microfluidics,” Lab on a Chip, Vol. 8, 2008, 198-220. 28. Wheeler A. R., Moon H., Bird C. A., Loo R. R. O., Kim C. J., Loo J. A., and Garrell R. L., “Digital Microfluidics with In-Line Sample Purification for Proteomics Analyses with MALDI-MS,” Analytical Chemestry, 2005, 534-540. 29. Xiong R., Bai M., and Chung J. N, “Formation of Bubbles in a Simple Co-Flowing Micro-Channel,” Micromechanics and Microengineering, Vol. 17, 2007, 1002-1011. 30. Zheng B., Tice J. D., and Ismagilov R. F., “Formation of Droplets of Alternating Composition in Microfluidic Channels and Applications to Indexing of Concentrations in Droplet-Based Assays,” Analytical Chemestry, 2004, 4977-4982. 31. 林佑駿, T型微流道乳化液滴生成與控制之研究, 國立中興大學碩士論文, 2008. 32. 國家實驗研究院儀器科技研究中心, 微機電系統技術與應用, 國研究儀科中心, 2004.
摘要: 
本研究利用雙十字型微流道,以油為連續相流體,三種不同顏色的水溶液為消散相流體,交替生成三種顏色的乳化液滴。實驗晶片是利用軟微影方法製作PDMS (Polydimethylsiloxane)微流道結構,再利用感應耦合電漿進行結合。流道的深度為97 μm,寬度為100-200 μm,在第一個十字匯集處利用流體聚焦生成白色液滴(不含墨汁之純水),再於第二個十字匯集處利用Double T-junction分別生成紅色與藍色液滴。本實驗以可視化設備觀察液滴生成情形,並搭配數值模擬探討油相與水相流率、無喉口、出口寬度與喉口寬度對液滴生成次序與大小的影響。當固定紅色與藍色水相流率(QRB = 4 μl/min),改變油相流率與白色墨水流率QOW (QOW/QRB = 1 - 7.5),可以將液滴排列順序R-W-B (紅白藍) 改變為R-W-B-W,生成白色液滴的長度為206 - 307 μm,而紅藍色液滴的長度為106 - 239 μm。當整體流率Qall = 8 μl/min時液滴彼此會結合。固定油相流率(4 μl/min),改變流率比QOW/QRB = 0.4 - 1,可以使白紅藍液滴相對數量比為原等比例變為2 : 3 : 3 (R-B-R-W-B-R-B-W)或1 : 2 : 2 (B-R-B-R-W)。全部寬度變為原本的兩倍時,仍可交替生成液滴。喉口寬度由100 μm減小為75 μm則可以縮小液滴長度與增加液滴之間的距離,並有效增加液滴的均勻性,但生成液滴的油相流率範圍則略為變小。

This study investigates the generation of alternate droplets in the double cross microchannel. In the present experiments, oil is used as the continuous phase fluid and water alone or dyed with red or blue ink as the dispersed phase fluid to form water-in-oil droplets of white (without ink), red and blue colors with a number of sequences depending on the ratio of flow rates. The microchannels are made of Polydimethylsiloxane (PDMS) using the soft lithography technique and bounded via inductively coupled plasma (ICP). The channels have a uniform depth of 97 μm and widths of 100-200 μm. At the first cross junction the white droplets are generated by the use of flow-focusing method, and then at second cross junction red and blue droplets are alternately generated by double T-junction structure. It is found that the droplet sequence of R-W-B (red-white-blue) can be changed to R-W-B-W through an increase of the ratio of oil and water flow rate to red and blue ink flow rate which is fixed at 4 μl/min (QOW/ORB = 1 - 7.5). The length of red and blue droplets ranges between 106 - 239 μm and the length of white droplet between 206 - 307 μm. The sequence of droplet generation may be altered from R-W-B to R-B-R-W-B-R-B-W or B-R-B-R-W at a droplet amount ratio (NW : NR : NB = 2 : 3 : 3 or 1 : 2 : 2) by decreasing the ratio of rate flow rate ranging from 1 to 0.4. At a higher overall flow rate of 8 μl/min, droplets may coalesce with another droplet. The droplets can also be generated alternatively with the same sequences for the channels are twice the original width. It is also found that the reduction of the width of the throat immediately downstream of the second cross junction leads to a decrease of the droplet size and an increase of the droplet uniformity. The present experimental results will beneficial to batch process and multi mixing with different droplets, and the emulsion technique developed here can also be applied to drug delivering, biosensor and biochemical screening.
URI: http://hdl.handle.net/11455/2398
其他識別: U0005-0302201108023000
Appears in Collections:機械工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.