Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/2402
DC FieldValueLanguage
dc.contributor林恆毅zh_TW
dc.contributor郭正雄zh_TW
dc.contributor謝秋帆zh_TW
dc.contributor.advisor盧昭暉zh_TW
dc.contributor.author林宏縉zh_TW
dc.contributor.authorLin, Hong-Jinen_US
dc.contributor.other中興大學zh_TW
dc.date2011zh_TW
dc.date.accessioned2014-06-05T11:43:14Z-
dc.date.available2014-06-05T11:43:14Z-
dc.identifierU0005-0507201014235300zh_TW
dc.identifier.citation[1] 鍾添東,林恒毅,爪式轉子之葉片設計方法,I273174,2007。 [2] 黃政傑,爪子引擎之性能分析研究,碩士論文,國立中興大學機械工程學系,台中、台灣,2008。 [3] 沈詩奇,爪式轉子引擎之機構分析,碩士論文,國立中興大學機械工程學系,台中、台灣,2008。 [4] 黎龍芳,齒輪幫浦容積效率與公差配合之改善,碩士論文,國立台灣大學機械工程學系,台北、台灣,2000。 [5] 林廷軒,外接正齒輪泵之最佳間隙研究,碩士論文,國立清華大學機械工程學系,新竹、台灣,2004。 [6] 周梓榮,賴幫鈞,羅亮光,環形微間隙壓力水流動特性及計算公式的研究,中圖分類號:TB126:TD431,文獻標識碼:A,第一期,第61-64頁,2007。 [7] 周梓榮,賴幫鈞,羅亮光,環形微間隙壓力水流動特性及計算公式的研究,中圖分類號:TB126:TD431,文獻標識碼:A,第二期,第50-57頁,2007。 [8] Yogendra Panta, “Numerical Flow Analysis of Gear Pump”, Youngstown State University, 2004. [9] “Two-dimensional CFD Analysis of a Hydraulic Pump”, Kim, H. W., Marie, H., Patil, S., Proceedings of the 2007 ASEE Annual Conference, Honolulu, Hawaii, June 2007. [10] 賴拓榮,新型爪式轉子水幫浦實驗分析,碩士論文,國立台灣大學機械工程學系,台北、台灣,2009。 [11] 傅重瑾,新型爪式轉子液態幫浦之設計,碩士論文,國立台灣大學機械工程學系,台北、台灣,2009。 [12] 朱凱民,爪式轉子幫浦之機構研究分析,碩士論文,國立中興大學機械工程學系,台中、台灣,2009。 [13] 金平仲,船舶噴水推進,國防工業出版社,北京,1986。 [14] 金平仲,噴水推進主要參數的確定,中國造船,63期,1987。 [15] http://adventure.howstuffworks.com/outdoor-activities/water-sports/personal-watercraft1.htm.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/2402-
dc.description.abstract本文所使用的「爪式轉子水泵」是良峰塑膠機械股份有限公司的構想,該水泵由共軛的轉子所構成,屬於正排量式水泵。主要探討爪式轉子水泵內部洩漏量計算,在整個爪式轉子水泵運轉過程中,從進水、轉移、擠壓到出水,隨時都會有洩漏產生。了解爪式轉子水泵內部洩漏發生原因,以及洩漏量與間隙及揚程之關係,有助於減少洩漏量,進而提升爪式轉子水泵之容積效率。 在建立水泵內部洩漏分析模式方面,本文採用兩種方法,分別為二維模式的解析解與二維模式的數值解。其中二維洩漏模式是利用流體力學基本的公式推導,分析水泵內部洩漏路徑以及洩漏量計算,並進行爪式轉子水泵性能實驗測試,最後與洩漏模式計算結果進行比對,以修正理論模式。本文再將二維洩漏模式代入準維動態模式,討論轉子轉動時,因體積變化所形成的壓力變化,以及由壓力變化所造成的流量變化。其計算結果顯示,間隙0.03mm的平均誤差有48.71%,間隙0.06mm的平均誤差有38.94%,間隙0.08mm的平均誤差有45.1%。 第二種方法為二維模式的數值解,本文使用CFD商用軟體Fluent進行數值模擬,分別進行二維的靜態與動態分析。在靜態分析時,假設轉子不動,分別局部模擬轉子尖端與腔壁與嚙合區轉子尖端與轉子尖端之間洩漏量。而在動態分析時,則使用動態網格來模擬轉子以固定轉速轉動時,觀察爪子與腔壁之間的流場,再據以計算轉子轉動時輸出之質量流率。使用Fluent進行二維動態分析,因沒有考慮轉子側壁的出入口導槽,會造成局部超高壓與超低壓的現象,無法有效預測爪式轉子水泵之洩漏量。 本文並探討使用爪式轉子水泵應用於船舶噴水推進之分析,以潛水艇為載具,探討船舶與爪式轉子水泵間的匹配問題,假設潛水艇以等速前進,若以四具CP900爪式轉子水泵做為噴水之動力源,可產生超過223,000 N的推力,船舶速度可達13節。zh_TW
dc.description.abstractThe water pump with claw rotors used in this study was invented by Liung Feng Industrial Co., LTD. This is a positive displacement pump consisting of rotos with conjugated curves. The internal leakage of this pump is studied in this paper. In the whole operating process of water pump with claw rotors, including water absorption, delivery, and compression to water outlet, leakages may occur at any time. By investigating the ways that internal leakage occurs, and the relationship between leakage flow rate and clearance as well as head, leakage flow rate can thus be reduced, thereby further increasing the bulk efficiency of water pump with claw rotors. Two ways of investigation were carried out. The first one was to establish a two-dimensional steady leakage mode, and then combine this model with a quasi-dimensional dynamic mode to calculate the whole leakage flow rate as claws are rotating. The basic formula of fluid mechanics is used to set up the two-dimensional leakage mode. The internal leakage route and leakage flow rate is analyzed, and the experiment of the characteristics of water pump with claw rotors is carried out, which is then compared with the calculation results of leakage mode to amend the theoretical mode. The quasi-dimensional mode is applied to discuss the pressure change formed by volume change when rotors rotate and the flow rate change caused by pressure change. The results show that the average error of 0.03mm clearance is 48.71%, the average error of 0.06mm clearance is 38.94% and the average error of 0.08mm clearance is 45.1%. The second method is the numerical solution of two-dimensional model. Fluent, a CFD program was utilized to simulate value and carry out static and dynamic analysis. At static analysis, if rotors are static, the leakage through the contact line between the tip of claw and outer case and the leakage through two contacting claws were simulated, respectively. At dynamic analysis, dynamic mesh was applied to simulate rotors and the flow field between claws and outer casing was applied. These are applied to determine the mass flow rate output while rotors are rotating. The simulation results showed that two-dimensional mode could not estimate effectively the leakage flow rate of water pump with claw rotors. In this study, the analysis of applying water pump with claw rotors on water jet propulsion of ships is discussed. Moreover, submarine is used as vector to discuss the matching problems between ships and water pump with claw rotors. Submarine is assumed moving forward at constant speed, In case using 4 claw rotor pumps of CP900 as power source. It could produce more than 223,000 N of thrust and the ship speed of up to 13 knot.en_US
dc.description.tableofcontents中文摘要i 英文摘要ii 目次iv 表目次vi 圖目次vii 符號說明x 第一章 緒論1 1.1 基本構造介紹及運轉原理1 1.2 文獻回顧5 1.3 研究方法6 1.3.1 洩漏模式6 1.3.2 洩漏數值模擬6 1.3.3 實驗量測7 1.3.4 應用於船舶推進器可行性分析7 第二章 二維洩漏模式與準維動態模式8 2.1 無轉動之二維洩漏量計算8 2.2 上平板以等速率移動之二維洩漏量計算13 2.3 兩平板分別以不同速率移動之二維洩漏量計算15 2.4 轉子側壁與側板之二維洩漏量計算17 2.5 四種洩漏路徑之洩漏量計算18 2.5.1 第一種洩漏路徑:轉子側壁與側板19 2.5.2 第二種洩漏路徑:嚙合區之轉子側壁與側板20 2.5.3 第三種洩漏路徑:轉子尖端與腔壁20 2.5.4 第四種洩漏路徑:嚙合區轉子尖端與轉子尖端之間25 2.6 入出口管路壓力損失流阻計算26 2.6.1 入口管路壓力損失流阻計算26 2.6.2 出口管路壓力損失流阻計算27 2.7 準維動態模式29 2.8 總洩漏量計算42 2.9 爪式轉子水泵實驗以及實驗數據44 2.10 理論模式與量測值之比較45 第三章 內部洩漏量數值模擬47 3.1 基本假設47 3.2 統御方程式47 3.3 靜態模型建立47 3.4 靜態網格生成48 3.5 靜態網格邊界條件設定50 3.6 靜態網格設定步驟51 3.7 靜態網格模擬結果51 3.8 靜態網格與二維公式以及實驗量測值比較57 3.9 動態模型建立60 3.10 動態網格生成60 3.11 動態網格邊界條件設定62 3.12 動態網格設定步驟63 3.13 動態網格模擬結果64 3.14 靜態網格與動態網格模擬結果比較67 第四章 爪式轉子水泵應用於噴水推進分析68 4.1 噴水推進的基本原理68 4.2 爪式轉子水泵推力理論計算70 4.3 爪式轉子水泵推力實驗量測73 4.4 爪式轉子水泵用於潛艇之目的77 4.5 爪式轉子水泵用於潛艇之系統要求77 4.6 爪式轉子水泵用於潛艇之系統規格77 4.7 爪式轉子水泵用於潛艇之計算結果78 4.7.1 已知水泵的排量,噴嘴直徑,計算不同轉速的推力78 4.7.2 固定馬達輸出功率時,計算最大推力84 4.7.3 考慮水泵葉片尖端速度的限制86 4.8 噴水推進之理想系統效率92 4.9 噴水速度與最高船舶速度之關係94 4.10 軸流式與爪式轉子水泵之差異96 4.11 入水口管道角度影響100 第五章 結論與未來工作102 5.1 結論102 5.2 未來工作103 5.2.1 洩漏量之量測實驗103 5.2.2 新尺寸之爪式轉子水泵性能預測104 5.2.3 串聯多級式水泵104 5.2.3 Fluent三維模擬105 5.2.4 爪式轉子水泵用於船舶推進之實驗105 參考文獻106zh_TW
dc.language.isoen_USzh_TW
dc.publisher機械工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0507201014235300en_US
dc.subjectclaw rotoren_US
dc.subject爪式轉子zh_TW
dc.subjectpositive displacementen_US
dc.subjectleakageen_US
dc.subjectwater jeten_US
dc.subject正排量式zh_TW
dc.subject洩漏zh_TW
dc.subject噴水推進zh_TW
dc.title新型爪式轉子水泵內部洩漏量分析與應用於船舶噴水推進之研究zh_TW
dc.titleAnalysis on the Internal Leakage of Water Pump with New Claw Rotors and Investigations on the Application to Water Jet Propulsion of Shipsen_US
dc.typeThesis and Dissertationzh_TW
item.fulltextno fulltext-
item.languageiso639-1en_US-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
Appears in Collections:機械工程學系所
Show simple item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.