Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/24060
標題: Stenotrophomonas maltophilia 之 RpfF 的晶體結構與 RpfB 的結晶研究:透過集約淬息反應可發展新型抗生素的潛力目標蛋白
Crystal Structure of RpfF and crystallization of RpfB from Stenotrophomonous maltophilia : Potential Target Proteins for Novel Antibiotics Development via Quorum Quenching
作者: 林仙雅
Lin, Hsien-Ya
關鍵字: Stenotrophomonas maltophilia;集約淬息反應;Quorum Quenching;crystallization;結晶;Stenotrophomonas maltophilia
出版社: 生物化學研究所
引用: 1. Bassler, M.B. et al., Quorum Sensing in bacteria. Annu. Rev. Microbiol., 2001. 55: p. 165-199. 2. Fuqua, C. et al., Census and consensus in bacterial ecosystems : The LuxR-LuxI Family of Quorum-Sensing Transcriptional Regulators. Annu. Rev. Microbiol., 1996. 50: p. 727-751. 3. Eberl, L., et al., Surface Motility of Serratia liquefaciens MG1. J. Biol., 1999. 181: p. 1703-1712. 4. Eberl, L., et al., N-Acyl homoserinelactone-mediated gene regulation in gram-negative bacteria. Syst. Appl. Microbiol., 1999. 22: p. 493–506. 5. Wang, L.-H., et al., A bacterial cell-cell communication signal with cross-kingdom structural analogues. Mol. Microbiol., 2004. 51: p. 903-912. 6. Barber, C.E., et al., A novel regulatory system required for pathogenicity of Xanthomonas campestris is mediated by a small diffusible signal molecule. Mol. Microbiol., 1997. 24: p. 555-566. 7. Dow, J.M., et al., Biofilm dispersal in Xanthomonas campestris is controlled by cell-cell signaling and is required for full virulence to plants. Proc. Natl. Acad. Sci. USA, 2003. 100: p. 10995-11000. 8. Ryan, R.P., et al., Cell-cell signaling in Xanthomonas campestris involves an HD-GYP domain protein that functions in cyclic di-GMP turnover. Proc. Natl. Acad. Sci. USA, 2006. 103: p. 6712-6717. 9. Slater, H., et al., A two-component system involving an HD-GYP domain protein links cell-cell signalling to pathogenicity gene expression in Xanthomonas campestris. Mol. Microbiol., 2000. 38: p. 986-1003. 10. Ryan, R.P., et al., Cyclic di-GMP signalling in the virulence and environmental adaptation of Xanthomonas campestris. Mol. Microbiol., 2007. 63: p. 429-442. 11. He, Y.W., et al., Dual signaling functions of the hybrid sensor kinase RpfC of Xanthomonas campestris involve either phosphorelay or receiver domain-protein interaction. J. Biol. Chem., 2006. 281: p. 33414-33421. 12. Newman, K.L., et al., Cell-cell signaling controls Xylella fastidiosa interactions with both insects and plants. Proc. Natl. Acad. Sci. USA, 2004. 101: p. 1737-1742. 13. Fouhy, Y., et al., Diffusible signal factor-dependent cell-cell signaling and virulence in the nosocomial pathogen Stenotrophomonas maltophilia. J. Bacteriol., 2007. 189: p. 4964-4968. 14. Huang, T.-P., et al., A cyclic AMP receptor protein-regulated cell-cell communication system mediates expression of a FecA homologue in Stenotrophomonas maltophilia. Appl. Environ. Microbiol., 2007. 73: p. 5-34-5040. 15. Chatterjee, S., et al., A cell-cell signaling sensor is required for virulence and insect transmission of Xylella fastidiosa. Proc. Natl. Acad. Sci. USA, 2008. 105: p. 2670-2675. 16. Huang, T.-P., et al., Extacellular fatty acids facilitate flagella-independent translocation by Stenotrophomonas maltophilia. Res. Microbio., 2007. 158: p. 702-711. 17. Colnaghi S., et al., Characterization of a putative Xylella fastidiosa diffusible signal factor by HRGC-EI-MS. J. Mass Spectrom., 2007. 42: p. 1375–1381. 18. Boon, et al., A novel DSF-like signal from Burkholderia cenocepacia interferes with Candida albicans morphological transition. ISME J, 2008. 2: p. 27–36. 19. Ryan, R.P., et al., Interspecies signalling via the Stenotrophomonas maltophilia diffusible signal factor influences biofilm formation and polymyxin tolerance in Pseudomonas aeruginosa. Mol Microbiol., 2008. 68: p. 75-86. 20. Garrison, M.W., et al., Stenotrophomonas maltophilia: Emergence of multidrug-resistant strains during therapy and in an in vitro pharmacodynamic chamber model. Antimicrob. Agents Chemother., 1996. 40: p. 2859-2864. 21. Hentzer M., et al., Inhibition of quorum sensing in Pseudomonas aeruginosa biofilm bacteria by a halogenated furanone compound. Microbiol., 2002. 148(1): p. 87-102. 22. Manny A. J., et al., Reinvestigation of the sulfuric acid-catalyzed cyclization of brominated 2-alkyllevulinic acids to 3-alkyl-5-methylene-2 (5H)-furanones. Tetrahedron, 1997. 53(46): p. 15813-15826. 23. Manefield M., et al., Halogenated furanones inhibit quorum sensing through accelerated LuxR turnover. Microbiol., 2002. 148: p. 1119-1127. 24. Parsek, et al., Acyl homoserine-lactone quorum-sensing signal generation. Proc. Natl. Acad. Sci. U. S. A., 1999. 96: p. 4360–4365. 25. Park S. Y. , et al., Nacylhomoserine lactonase producing Rhodococcus spp. with different AHL-degrading activities. FEMS Microbiol. Lett., 2006. 261: p. 102-108. 26. Lin Y. H. , et al., Acyl-homoserine lactone acylas from Ralstonia strain XJl2B represents a novel and potent class of quorum-quenching enzymes. Mol. Microbiol., 2002. 47: p. 849-860. 27. Looney, W.J., et al., Stenotrophomonas maltophilia: an emerging oppostunist human pathogen. Lancet Infect. Dis., 2009. 9: p. 312-323. 28. Aznar, R.A., et al., Siderophores and related outer membrane proteins produced by pseudomonads isolated from eels and freshwater. FEMS Microbiol. Lett, 1992. 77: p. 269-275. 29. Hauben, L., et al., Genomic diversity of the genus Stenotrophomonas. Int. J. Syst. Bacteriol., 1999. 49: p. 1749-1760. 30. Juhnke, M.E., et al., Identification and Characterization of Rhizosphere-Competent Bacteria of Wheat. Appl. Environ. Microbiol., 1987. 53: p. 2793-2799. 31. Lambert, T., et al., Characterization of the chromosomal aac(6'')-Iz gene of Stenotrophomonas maltophilia. Antimicrob. Agents Chemother., 1999. 43: p. 2366-2371. 32. Debette, J.B., et al., Presence of Pseudomonas maltophilia in the rhizosphere of several cultivated plants. Can. J. Microbiol., 1980. 26: p. 460-463. 33. Ikemoto, S., et al., Characterization of strains of Pseudomonas maltophilia which do not require methionine. Int. J. Sys.t Bacteriol., 1980. 30: p. 437-447. 34. Denton, M. et al., Microbiological and clinical aspects of infection associated with Stenotrophomonas maltophilia. Clinical. Microbiol. Rev., 1998. 11: p. 57-80. 35. Wang, W.S., et al., Stenotrophomonas maltophilia bacteremia in adults: four years'' experience in a medical center in northern Taiwan. J. Microbiol. Immunol. Infect., 2004. 37: p. 359-365. 36. Windhorst, S., et al, The major extracellular protease of the nosocomial pathogen Stenotrophomonas maltophilia: characterization of the protein and molecular cloning of the gene. J. Biol. Chem., 2002. 277: p. 11042-11049. 37. Dufresne, J., et al, Cloning and expression of the imipenem-hydrolyzing beta-lactamase operon from Pseudomonas maltophilia in Escherichia coli. Antimicrob. Agents Chemother., 1988. 32: p. 819-826. 38. Spencer, J., et al, Novel mechanism of hydrolysis of therapeutic beta-lactams by Stenotrophomonas maltophilia L1 metallo-beta-lactamase. J. Biol Chem, 2001. 276: p. 33638-33644. 39. Alonso, A., et al, Stenotrophomonas maltophilia D457R contains a cluster of genes from gram-positive bacteria involved in antibiotic and heavy metal resistance. Antimicrob. Agents Chemother., 2000. 44: p. 1778-1782. 40. da Silva, A.C.R., et al., Comparison of the genomes of two Xanthomonas pathogens with differing host specificities. Nature, 2002. 417: p. 459-463. 41. Simpson, A.J.G., et al., The genome sequence of the plant pathogen Xylella fastidiosa. Nature, 2000. 406: p. 151-156. 42. Salanoubat, M., et al., Genome sequence of the plant pathogen Ralstonia solanacearum. Nature, 2002. 415: p. 497-502. 43. 王旭川, Xanthomonas campestris pv. campestris基因體序列的基因預測與註解. 國立清華大學生命科學所碩士論文, 2002. 44. Frishman, D.K., et al., Functional and structural genomics using PEDANT. Bioinformatics., 2001. 17: p. 44-57. 45. Zarembinski, T.I., et al., Structure-based assignment of the biochemical function of a hypothetical protein: A test case of structural genomics. Proc. Natl. Acad. Sci. USA, 1998. 95: p. 15189-15193. 46. Laskowski, R.A., et al., From protein structure to biochemical function? J. Struct. Funct. Genomics 2003. 4: p. 167-177. 47. 楊超宇, Xanthomonas campestris pv. campestris未知功能蛋白之大量表達與結構分析. 國立中興大學生命科學所碩士論文, 2005. 48. Christian K.E., et al., Crystal structure of enoyl-coenzyme A (CoA) hydratase at 2.5 A resolution: a spiral fold defines the CoA-binding pocket. EMBO, 1996. 15: p. 5135-5145. 49. Robert, et al., Enoyl Coenzyme A Hydratase (Crotonase). J. Biol. Chem., 1972. 247: p. 5258-5265.
摘要: 
Stenotrophomonas maltophilia藉由釋放訊息分子 DSF ( diffusible signal factor, cis-11-methyl-2-dodecenoic acid ) 以調控其主要的致病機制。該訊息分子的合成係賴rpf ( regulation of pathogenicity factors ) gene cluster 中所編譯的蛋白 RpfF 及RpfB 來完成。有鑒於 S. maltophilia 具高度多重抗藥性,對於免疫抑制或身體抵抗力差的病人常造成致命的嚴重後果,因此若能抑制 DSF 合成,或阻斷其訊息傳遞路徑,應可為對抗細菌感染提供一新的醫療途徑。我的研究工作係針對此二重要酵素蛋白做其結構與功能分析。
利用生物資訊分析推測 RpfB為 long chain fatty acid CoA ligase ,而 RpfF 則屬於 enoyl CoA hydrotase 。目前 RpfB 已利用 Escherichia coli 為表現載體,可大量獲得蛋白並純化,現正多方嘗試其結晶條件。另外,RpfF 則已獲得解析度為 2.25 Å 的 RpfF蛋白結構,可看到晶體中 RpfF 以三聚體的形式組成一個不對稱單元,此為典型 enoyl CoA hydratase 的多聚體型態。然與其他已知結構者相比,其 CoA 結合區域卻被一

Stenotrophomonas maltophilia has emerged as a critical noncosomial opportunistic pathogen in the last few years. It is resistant to many clinically useful antibiotics; hence, new ways of combating this bacterium are essential. Diffusible signal factor (DSF) dependent quorum sensing is a major mechanism of virulence induction in S. maltophilia, with RpfF playing a key role in DSF biosynthesis. Inhibiting S. maltophilia RpfF (SmRpfF) function via small molecule interference may constitute a new way of treating S. maltophilia infection. SmRpfF has been overexpressed in Escherichia coli, purified and crystallized using hanging-drop vapour-diffusion method. The crystals belong to the tetragonal space group P41212 containing three protein molecules per asymmetric unit, with unit-cell parameters a = b = 148.51, c = 122.82 Å, and were diffracted to a resolution of 2.25 Å. Our results indicate that SmRpfF belongs to the enoyl-CoA hydratase / enoyl-CoA isomerase family, but with some distinct features; the acyl-CoA substrate entrance is blocked to a great extent by re-orientated C-terminal
URI: http://hdl.handle.net/11455/24060
其他識別: U0005-2107201014181000
Appears in Collections:生物化學研究所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.