Please use this identifier to cite or link to this item:
http://hdl.handle.net/11455/24096
標題: | Xanthomonas第三型致病性蛋白之細胞及生化功能分析 Cellular and biochemical characterization of Xanthomonas type III effectors |
作者: | 林鴻 Lin, Hong |
關鍵字: | Xanthomonas campestris pv. campestris;十字花科黑腐菌 | 出版社: | 生物化學研究所 | 引用: | Belkhadir, Y., and Chory, J. (2006). Brassinosteroid signaling: a paradigm for steroid hormone signaling from the cell surface. Science 314, 1410-1411. Buell, C.R. (2002). Interactions Between Xanthomonas Species and Arabidopsis thaliana. The Arabidopsis Book, e0031. Buttner, D., and Bonas, U. (2010). Regulation and secretion of Xanthomonas virulence factors. FEMS Microbiol Rev 34, 107-133. Canonne, J., Marino, D., Noel, L.D., Arechaga, I., Pichereaux, C., Rossignol, M., Roby, D., and Rivas, S. (2010). Detection and functional characterization of a 215 amino acid N-terminal extension in the xanthomonas type III effector XopD. PLoS One 5, e15773. Catala, R., Ouyang, J., Abreu, I.A., Hu, Y., Seo, H., Zhang, X., and Chua, N.H. (2007). The Arabidopsis E3 SUMO ligase SIZ1 regulates plant growth and drought responses. Plant Cell 19, 2952-2966. Chen, Z., Agnew, J.L., Cohen, J.D., He, P., Shan, L., Sheen, J., and Kunkel, B.N. (2007). Pseudomonas syringae type III effector AvrRpt2 alters Arabidopsis thaliana auxin physiology. Proc Natl Acad Sci U S A 104, 20131-20136. Flors, V., Ton, J., van Doorn, R., Jakab, G., Garcia-Agustin, P., and Mauch-Mani, B. (2008). Interplay between JA, SA and ABA signalling during basal and induced resistance against Pseudomonas syringae and Alternaria brassicicola. Plant Journal 54, 81-92. Gill, G. (2004). SUMO and ubiquitin in the nucleus: different functions, similar mechanisms? Genes Dev 18, 2046-2059. Glazebrook, J. (2005). Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43, 205-227. Heese, A., Hann, D.R., Gimenez-Ibanez, S., Jones, A.M., He, K., Li, J., Schroeder, J.I., Peck, S.C., and Rathjen, J.P. (2007). The receptor-like kinase SERK3/BAK1 is a central regulator of innate immunity in plants. Proc Natl Acad Sci U S A 104, 12217-12222. Hotson, A., Chosed, R., Shu, H., Orth, K., and Mudgett, M.B. (2003). Xanthomonas type III effector XopD targets SUMO-conjugated proteins in planta. Mol Microbiol 50, 377-389. Hotson, A., and Mudgett, M.B. (2004). Cysteine proteases in phytopathogenic bacteria: identification of plant targets and activation of innate immunity. Curr Opin Plant Biol 7, 384-390. Jang, I.C., Yang, J.Y., Seo, H.S., and Chua, N.H. (2005). HFR1 is targeted by COP1 E3 ligase for post-translational proteolysis during phytochrome A signaling. Gene Dev 19, 593-602. Jang, I.C., Yang, S.W., Yang, J.Y., and Chua, N.H. (2007). Independent and interdependent functions of LAF1 and HFR1 in phytochrome A signaling. Genes Dev 21, 2100-2111. Kay, S., and Bonas, U. (2009). How Xanthomonas type III effectors manipulate the host plant. Curr Opin Microbiol 12, 37-43. Kim, J.G., Taylor, K.W., Hotson, A., Keegan, M., Schmelz, E.A., and Mudgett, M.B. (2008). XopD SUMO protease affects host transcription, promotes pathogen growth, and delays symptom development in xanthomonas-infected tomato leaves. Plant Cell 20, 1915-1929. Kinch, L.N., Yarbrough, M.L., Orth, K., and Grishin, N.V. (2009). Fido, a novel AMPylation domain common to fic, doc, and AvrB. PLoS One 4, e5818. Kurepa, J., Walker, J.M., Smalle, J., Gosink, M.M., Davis, S.J., Durham, T.L., Sung, D.Y., and Vierstra, R.D. (2003). The small ubiquitin-like modifier (SUMO) protein modification system in Arabidopsis. Accumulation of SUMO1 and -2 conjugates is increased by stress. J Biol Chem 278, 6862-6872. Lee, J., Nam, J., Park, H.C., Na, G., Miura, K., Jin, J.B., Yoo, C.Y., Baek, D., Kim, D.H., Jeong, J.C., Kim, D., Lee, S.Y., Salt, D.E., Mengiste, T., Gong, Q., Ma, S., Bohnert, H.J., Kwak, S.S., Bressan, R.A., Hasegawa, P.M., and Yun, D.J. (2007). Salicylic acid-mediated innate immunity in Arabidopsis is regulated by SIZ1 SUMO E3 ligase. Plant J 49, 79-90. Miura, K., Rus, A., Sharkhuu, A., Yokoi, S., Karthikeyan, A.S., Raghothama, K.G., Baek, D., Koo, Y.D., Jin, J.B., Bressan, R.A., Yun, D.J., and Hasegawa, P.M. (2005). The Arabidopsis SUMO E3 ligase SIZ1 controls phosphate deficiency responses. Proc Natl Acad Sci U S A 102, 7760-7765. Mukherjee, S., Keitany, G., Li, Y., Wang, Y., Ball, H.L., Goldsmith, E.J., and Orth, K. (2006). Yersinia YopJ acetylates and inhibits kinase activation by blocking phosphorylation. Science 312, 1211-1214. Navarro, L., Bari, R., Achard, P., Lison, P., Nemri, A., Harberd, N.P., and Jones, J.D. (2008). DELLAs control plant immune responses by modulating the balance of jasmonic acid and salicylic acid signaling. Curr Biol 18, 650-655. Neff, M.M., Fankhauser, C., and Chory, J. (2000). Light: an indicator of time and place. Genes Dev 14, 257-271. Novatchkova, M., Budhiraja, R., Coupland, G., Eisenhaber, F., and Bachmair, A. (2004). SUMO conjugation in plants. Planta 220, 1-8. Pieterse, C.M., Leon-Reyes, A., Van der Ent, S., and Van Wees, S.C. (2009). Networking by small-molecule hormones in plant immunity. Nat Chem Biol 5, 308-316. Robson, F., Okamoto, H., Patrick, E., Harris, S.R., Wasternack, C., Brearley, C., and Turner, J.G. (2010). Jasmonate and phytochrome A signaling in Arabidopsis wound and shade responses are integrated through JAZ1 stability. Plant Cell 22, 1143-1160. Setubal, J.C., Moreira, L.M., Almeida, N.F., Potnis, N., Digiampietri, L.A., Adi, S.S., Bortolossi, J.C., da Silva, A.C., da Silva, A.M., de Moraes, F.E., de Oliveira, J.C., de Souza, R.F., Facincani, A.P., Ferraz, A.L., Ferro, M.I., Furlan, L.R., Gimenez, D.F., Jones, J.B., Kitajima, E.W., Laia, M.L., Leite, R.P., Nishiyama, M.Y., Neto, J.R., Nociti, L.A., Norman, D.J., Ostroski, E.H., Pereira, H.A., Staskawicz, B.J., Tezza, R.I., Ferro, J.A., and Vinatzer, B.A. (2010). Novel insights into the genomic basis of citrus canker based on the genome sequences of two strains of Xanthomonas fuscans subsp aurantifolii. BMC Genomics 11. Siemens, J., Keller, I., Sarx, J., Kunz, S., Schuller, A., Nagel, W., Schmulling, T., Parniske, M., and Ludwig-Muller, J. (2006). Transcriptome analysis of Arabidopsis clubroots indicate a key role for cytokinins in disease development. Mol Plant Microbe Interact 19, 480-494. Swords, K.M., Dahlbeck, D., Kearney, B., Roy, M., and Staskawicz, B.J. (1996). Spontaneous and induced mutations in a single open reading frame alter both virulence and avirulence in Xanthomonas campestris pv. vesicatoria avrBs2. J Bacteriol 178, 4661-4669. Yang, J., Lin, R., Sullivan, J., Hoecker, U., Liu, B., Xu, L., Deng, X.W., and Wang, H. (2005). Light regulates COP1-mediated degradation of HFR1, a transcription factor essential for light signaling in Arabidopsis. Plant Cell 17, 804-821. | 摘要: | Xanthomonas為革蘭氏陰性植物病原細菌,其寄主範圍廣泛,可以感染多種的重要經濟作物,也可以感染模式植物擬南芥。Xanthomonas致病力依賴於第三型分泌系統,會注射致病性蛋白分子進入植物細胞中,來幫助病原菌繁殖,然而絕大多數的致病性蛋白分子,其致病的分子機制仍然是未知。藉由基因轉殖實驗發現X. campestris pv. campestris的xopd8004轉基因植株,在誘導劑處理下會形成胚軸延長的白化苗,這種外表型跟光型態發育的缺失相似。目前XopD的相關研究主要侷限在X. campestris pv. vescatoria 85-10中。相較於XopD85-10的760個胺基酸,XopD8004只有442個胺基酸,但經由in vitro和in vivo的SUMO蛋白水解酶活性測試可知XopD8004和XopD85-10一樣能夠專一性辨識鍵結在受質蛋白上的 SUMO並進行水解。在in vitro pull-down分析中得知XopD8004會和植物光訊息傳導的轉錄因子HFR1有交互作用。而且在共軛焦顯微鏡的觀察下,發現XopD8004-YFP和HFR1-CFP一樣會在細胞核中聚集成小點,並且座落於相同位置。因此推測HFR1是XopD8004在植物細胞中的目標蛋白,而且可能參與植物的免疫反應。同時本實驗室也建立起ADP ribosyltransferases (ADP-RTs)的酵素活性鑑定法,並且偵測到P. syringae pv. tomato DC3000 HopU1的ADP-RTs活性。雖然X. axonopodis pv. citri 306的XopAI其蛋白C端被推測可能具有ADP-RTs的酵素活性,但實驗中並無法發現,推論XopAI306可能需要其他蛋白的幫助才能進行ADP-RTs的酵素反應。 Xanthomonas is a Gram-negative bacterial pathogens. It can infect not only a variety of important economic crops, but also the model plant Arabidopsis thaliana. Xanthomonas use the type III secretion system to deliver the type III effector proteins into the plant cells to help bacteria multiply. However, the functions of most effector proteins are still unknown. Here XVE:xopd8004 transgenic plants showed etiolated phenotypes with long hypocotyls and chlorophyll-less cotyledons. This phenomenon is the same with the deficiency of photomorphogenesis. So far, the related researches of XopD largely confined to that of X. campestris pv. vescatoria 85-10. The protein size of XopD85-10 is 760 amino acids. Although XopD8004 only has 442 amino acids, Nevertheless XopD8004 can specifically recognize and hydrolyze the SUMO-modified proteins in vitro and in vivo. Using a pull-down assay, XopD8004 was found to interact with HFR1, a transcription factor in light signaling transduction pathway. Moreover, using confocal laser scanning, the fluorescent signal of XopD8004-YFP was observed in the nucleus as foci and co-localized with HFR1-CFP. As a result, we proposed that HFR1 is the cellular target protein of XopD8004 and may be involved in the plant immune response. Here, we also established a protocol to identify ADP ribosyltransferases (ADP-RTs) activity of type III effectors. In P. syringae, three type III effectors have been suggested to have ADP-RTs activities including HopO1-1, HopO1-2 and HopU1. According to the method, we have observed ADP-RTs activity of HopU1. Although X. axonopodis XopAI306 has been suggested to have similar domain as HopO1-1, no enzyme activity was observed using our method. |
URI: | http://hdl.handle.net/11455/24096 | 其他識別: | U0005-2908201111531500 |
Appears in Collections: | 生物化學研究所 |
Show full item record
TAIR Related Article
Google ScholarTM
Check
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.