Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/24098
標題: 阿拉伯芥新穎硫鐵蛋白AtCISD2功能性分析
Functional characterization of a novel Arabidopsis iron-sulfur protein AtCISD2
作者: 張書恆
Chang, Shu-Heng
關鍵字: Arabidopsis;阿拉伯芥;iron-sulfur protein;硫鐵蛋白
出版社: 生物化學研究所
引用: Abadia, J., Vazquez, S., Rellan-Alvarez, R., El-Jendoubi, H., Abadia, A., Alvarez-Fernandez, A., and Lopez-Millan, A.F. (2011). Towards a knowledge-based correction of iron chlorosis. Plant Physiology and Biochemistry 49, 471-482. Apel, K., and Hirt, H. (2004). Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology 55, 373-399. Balk, J., and Lobreaux, S. (2005). Biogenesis of iron-sulfur proteins in plants. Trends in Plant Science 10, 324-331. Balk, J., and Pilon, M. (2011). Ancient and essential: the assembly of iron-sulfur clusters in plants. Trends in Plant Science 16, 218-226. Beinert, H., Holm, R.H., and Munck, E. (1997). Iron-sulfur clusters: nature''s modular, multipurpose structures. Science 277, 653-659. Chang, N.C., Nguyen, M., Germain, M., and Shore, G.C. (2009). Antagonism of Beclin 1-dependent autophagy by BCL-2 at the endoplasmic reticulum requires NAF-1. The EMBO Journal 29, 606-618. Chen, Y.F., Kao, C.H., Kirby, R., and Tsai, T.F. (2009a). Cisd2 mediates mitochondrial integrity and life span in mammals. Autophagy 5, 1043-1045. Chen, Y.F., Wu, C.Y., Kirby, R., Kao, C.H., and Tsai, T.F. (2010). A role for the CISD2 gene in lifespan control and human disease. Annals of the New York Academy of Sciences 1201, 58-64. Chen, Y.F., Kao, C.H., Chen, Y.T., Wang, C.H., Wu, C.Y., Tsai, C.Y., Liu, F.C., Yang, C.W., Wei, Y.H., Hsu, M.T., Tsai, S.F., and Tsai, T.F. (2009b). Cisd2 deficiency drives premature aging and causes mitochondria-mediated defects in mice. Genes & Development 23, 1183-1194. Choi, Y., Gehring, M., Johnson, L., Hannon, M., Harada, J.J., Goldberg, R.B., Jacobsen, S.E., and Fischer, R.L. (2002). DEMETER, a DNA glycosylase domain protein, is required for endosperm gene imprinting and seed viability in arabidopsis. Cell 110, 33-42. Colca, J.R., McDonald, W.G., Waldon, D.J., Leone, J.W., Lull, J.M., Bannow, C.A., Lund, E.T., and Mathews, W.R. (2004). Identification of a novel mitochondrial protein ("mitoNEET") cross-linked specifically by a thiazolidinedione photoprobe. American Journal of Physiology Endocrinology and Metabolism 286, E252-260. Conlan, A.R., Axelrod, H.L., Cohen, A.E., Abresch, E.C., Zuris, J., Yee, D., Nechushtai, R., Jennings, P.A., and Paddock, M.L. (2009). Crystal Structure of Miner1: The Redox-active 2Fe-2S Protein Causative in Wolfram Syndrome 2. Journal of Molecular Biology 392, 143-153. del Rio, L.A., Sandalio, L.M., Corpas, F.J., Palma, J.M., and Barroso, J.B. (2006). Reactive oxygen species and reactive nitrogen species in peroxisomes. Production, scavenging, and role in cell signaling. Plant Physiology 141, 330-335. Gill, S.S., and Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology Biochemistry 48, 909-930. Grieshaber, M.K., and Volkel, S. (1998). Animal adaptations for tolerance and exploitation of poisonous sulfide. Annual Review Physiology 60, 33-53. Guo, F.Q., Okamoto, M., and Crawford, N.M. (2003). Identification of a plant nitric oxide synthase gene involved in hormonal signaling. Science 302, 100-103. Halliwell, B., and Gutteridge, J.M. (1984). Oxygen toxicity, oxygen radicals, transition metals and disease. The Biochemistry Journal 219, 1-14. Hirata, A., Klein, B.J., and Murakami, K.S. (2008). The X-ray crystal structure of RNA polymerase from Archaea. Nature 451, 851-854. Huang, H.E., Ger, M.J., Yip, M.K., Chen, C.Y., Pandey, A.K., and Feng, T.Y. (2004). A hypersensitive response was induced by virulent bacteria in transgenic tobacco plants overexpressing a plant ferredoxin-like protein (PFLP). Physiology and Molecular Plant Pathology 64, 103-110. Jarvis, P. (2008). Targeting of nucleus-encoded proteins to chloroplasts in plants. The New Phytologist 179, 257-285. Klinge, S., Hirst, J., Maman, J.D., Krude, T., and Pellegrini, L. (2007). An iron-sulfur domain of the eukaryotic primase is essential for RNA primer synthesis. Nature Structure and Molecular Biology 14, 875-877. Li, H.M., and Chiu, C.C. (2010). Protein transport into chloroplasts. Annual Review Plant Biology 61, 157-180. Lill, R. (2009). Function and biogenesis of iron-sulphur proteins. Nature 460, 831-838. Lill, R., and Mühlenhoff, U. (2006). Iron-Sulfur Protein Biogenesis in Eukaryotes: Components and Mechanisms. Annual Review of Cell and Developmental Biology 22, 457-486. Lill, R., and Muhlenhoff, U. (2008). Maturation of iron-sulfur proteins in eukaryotes: mechanisms, connected processes, and diseases. Annual Review of Biochemistry 77, 669-700. Lin, J., Zhou, T., Ye, K., and Wang, J. (2007). Crystal structure of human mitoNEET reveals distinct groups of iron sulfur proteins. Proceedings of the National Academy of Science U.S.A. 104, 14640-14645. Liu, Y., Schiff, M., Marathe, R., and Dinesh-Kumar, S.P. (2002). Tobacco Rar1, EDS1 and NPR1/NIM1 like genes are required for N-mediated resistance to tobacco mosaic virus. The Plant Journal 30, 415-429. Maiuri, M.C., Criollo, A., and Kroemer, G. (2010). Crosstalk between apoptosis and autophagy within the Beclin 1 interactome. The EMBO Journal 29, 515-516. Meyer, J. (2008). Iron-sulfur protein folds, iron-sulfur chemistry, and evolution. Journal of Biological Inorganic Chemistry 13, 157-170. Navrot, N., Rouhier, N., Gelhaye, E., and Jacquot, J.P. (2007). Reactive oxygen species generation and antioxidant systems in plant mitochondria. Physiologia Plantarum 129, 185-195. Paddock, M.L., Wiley, S.E., Axelrod, H.L., Cohen, A.E., Roy, M., Abresch, E.C., Capraro, D., Murphy, A.N., Nechushtai, R., Dixon, J.E., and Jennings, P.A. (2007). MitoNEET is a uniquely folded 2Fe 2S outer mitochondrial membrane protein stabilized by pioglitazone. Proceedings of the National Academy of Sciences U.S.A. 104, 14342-14347. Puca, A.A., Daly, M.J., Brewster, S.J., Matise, T.C., Barrett, J., Shea-Drinkwater, M., Kang, S., Joyce, E., Nicoli, J., Benson, E., Kunkel, L.M., and Perls, T. (2001). A genome-wide scan for linkage to human exceptional longevity identifies a locus on chromosome 4. roceedings of the National Academy of Science U.S.A. 98, 10505-10508. Rampey, R.A., Woodward, A.W., Hobbs, B.N., Tierney, M.P., Lahner, B., Salt, D.E., and Bartel, B. (2006). An Arabidopsis basic helix-loop-helix leucine zipper protein modulates metal homeostasis and auxin conjugate responsiveness. Genetics 174, 1841-1857. Sheftel, A., Stehling, O., and Lill, R. (2010). Iron-sulfur proteins in health and disease. Trends in Endocrinology and Metabolism 21, 302-314. Soll, J., and Schleiff, E. (2004). Protein import into chloroplasts. Nature Reviews. Molecular Cell Biology 5, 198-208. Song, C.P., Guo, Y., Qiu, Q., Lambert, G., Galbraith, D.W., Jagendorf, A., and Zhu, J.K. (2004). A probable Na+(K+)/H+ exchanger on the chloroplast envelope functions in pH homeostasis and chloroplast development in Arabidopsis thaliana. roceedings of the National Academy of Science U.S.A. 101, 10211-10216. Wang, W., and Malcolm, B.A. (1999). Two-stage PCR protocol allowing introduction of multiple mutations, deletions and insertions using QuikChange Site-Directed Mutagenesis. Biotechniques 26, 680-682. Wiley, S.E., Murphy, A.N., Ross, S.A., van der Geer, P., and Dixon, J.E. (2007a). MitoNEET is an iron-containing outer mitochondrial membrane protein that regulates oxidative capacity. Proceedings of the National Academy of Sciences U.S.A. 104, 5318-5323. Wiley, S.E., Paddock, M.L., Abresch, E.C., Gross, L., van der Geer, P., Nechushtai, R., Murphy, A.N., Jennings, P.A., and Dixon, J.E. (2007b). The Outer Mitochondrial Membrane Protein mitoNEET Contains a Novel Redox-active 2Fe-2S Cluster. Journal of Biological Chemistry 282, 23745-23749. Zhu, J., Fu, X., Koo, Y.D., Zhu, J.K., Jenney, F.E., Jr., Adams, M.W., Zhu, Y., Shi, H., Yun, D.J., Hasegawa, P.M., and Bressan, R.A. (2007). An enhancer mutant of Arabidopsis salt overly sensitive 3 mediates both ion homeostasis and the oxidative stress response. Molecular and Cell Biology 27, 5214-5224.
摘要: 
硫鐵蛋白(iron-sulfur proteins)是一種重要且古老的蛋白質,會與Fe-S簇和物(Fe-S clusters)鍵結參與在許多不同的生理反應中。Fe-S簇和物是一種輔助因子,可以作為電子的供體和受體,常藉由鐵原子與硫鐵蛋白的半胱胺酸(cysteine)殘基鍵結。近來發現CDGSH domain以特有的Cys3-His1配體與Fe-S簇和物結合。在人類與老鼠中具有三個CDGSH domain的蛋白,分別為CISD1 (CDGSH iron sulfur domain 1)、CISD2和CISD3。由小鼠的剔除實驗可知,缺乏CISD1會造成粒線體的氧化能力下降,缺乏CISD2會導致粒線體的缺陷和自我吞食(autophage)的增加,進而出現早衰的現象。本實驗室經由序列比對分析,發現CDGSH domain具有高度的保留性,並且廣泛存在於真核生物中。其中阿拉伯芥具有單一CDGSH domain蛋白,其序列與人類的CISD2較為相似,因此命名為AtCISD2。研究發現AtCISD2重組蛋白呈現棕紅色,並且吸收光譜中有兩個吸收波峰,分別在458和530 nm。顯示AtCISD2蛋白具有與Fe-S簇和物鍵結的能力。此外也發現AtCISD2-YFP蛋白分佈於葉綠體,顯示AtCISD2基因的N端序列具有葉綠體定位訊號胜肽,與小鼠中的粒線體定位訊號胜肽不同。AtCISD2基因的啟動子分析,發現AtCISD2基因的表現主要集中於葉子上。因此當利用VIGS沉默菸草NbCISD2基因的表現時,菸草葉片會提前出現黃化現象,顯示當植物缺乏CISD2蛋白時會導致植物的提早老化。

Iron-sulfur (Fe-S) proteins are important and ancient protein, binding with Fe-S clusters and participant in numerous metabolism reactions. Fe-S clusters are cofactor and have the ability to accept or donate electrons, often binding to proteins through the interaction of the irons atoms with cysteine residues. Recent findings suggest that CDGSH domains have the ability to bind Fe-S clusters. There are three members of CDGSH domain proteins in mouse: CISD1 (CDGSH iron sulfur domain 1), CISD2 and CISD3. The reduced oxidative capacity mitochondria of was observed in cisd1 knockout mice. The cisd2 knockout mice showed premature aging cause by mitochondria breakdown and autophagy. Sequence alignment analysis shows that CDGSH domain is highly conserved, and widely exist in eukaryotes. There is a single CDGSH domain protein found in Arabidopsis, because the sequence is similar to human's CISD2. It was named as AtCISD2. The brownish color and two absorbsent spectrum peaks at 458 and 530 nm observed in the recombinant protein of AtCISD2, indicated that AtCISD2 has the ability to bind Fe-S clusters . The fluorescent signal of AtCISD2-YFP observed in chloroplast, indicated AtCISD2 has a chloroplast targeting signal sequence in N terminal. AtCISD2 promoter analysis also showed that AtCISD2 promoter strong expression AtCISD2 gene in leaves. Using VIGS to silence NbCISD2 gene, Nicotinana showed early chlorotic leaf phenotype. This phenomenon suggests that plant deficiency in CISD2 will lead to premature aging.
URI: http://hdl.handle.net/11455/24098
其他識別: U0005-2908201112014200
Appears in Collections:生物化學研究所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.