Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributor.authorChen, Yi-Hungen_US
dc.identifier.citation[1] R. P. Feynman, “There’s plenty of room at the bottom,” IEEE. ASME. JMEMS, Vol.1, pp.60-65, 1992. [2] 馬榮遠, “奈米科技,” 商周出版, 2002. [3] A. Kawabata and R. Kubo, “Electronic Properties of Fine Metallic Particles. II,” J. Phys. Soc. Jpn, Vol.21, pp.1765-1772, 1966. [4] N. Taniguchi, “On the Basic Concept of Nanotechnology,” Proc. Int. Conf. Prod. Eng. Tokyo. Japan, pp.18-23, 1974. [5] G. Binnig, H. Rohrer, Ch. Gerber and E. Weibel, “Surface Studies by Scanning Tunneling Microscopy,” Phys. Rev. Lett, Vol.49, pp.57-61, 1982. [6] G. Binnig, C. F. Quate and Ch. Gerber, “Atomic force microscope,” Phys. Rev. Lett, Vol.56, pp.930-933, 1986. [7] T. G. Dietz, M. A. Duncan, D. E. Powers and R. E. Smalley, “Laser production of supersonic metal cluster beams,” Chem. Phys, Vol.74, pp.6511-6512, 1981. [8] H. W. Kroto, A. W. Allaf and S. P. Balm, “C60: Buckminsterfullerene,” Chem. Rev, Vol.91, pp.1213-1235, 1991. [9] D. M. Eigler and E. K. Schweizer, “Positioning single atoms with a scanning tunneling microscope,” Nature, Vol.344, pp.524-526, 1990. [10] S. Iijima, “Helical microtubules of graphitic carbon,” Nature, Vol.354, pp.56-58, 1991. [11] G. E. Moore, “Cramming More Components onto Integrated Circuits,” Proce. IEEE, Vol.86, pp.1-4, 1998. [12] C. Park, J. Yoon and E. L. Thomas, “Enabling nanotechnology with self assembled block copolymer patterns,” Polymer,Vol.44, pp.6725-6760, 2003. [13] 施錫龍, 蔡來福, 文祥昇, 戴寶通, 丁永強, 許丕明, 李明峻, “65奈米光罩 製作,” 奈米通訊, 第十二卷第一期, pp.33-37, 2003. [14] P. Bergveld, “Development of an Ion-Sensitive Solid-State Device for Neurophysiological Measurements,” IEEE Trans on biomed eng, Vol.17, pp.70-71, 1970. [15] D.G. Hafeman, J. W. Parce, H. M. McConnell, “Light-Addressable Potentiometric Sensor for Biochemical Systems,” Science, Vol.240, pp.182-1185, 1988. [16] M. Adami, D. Alliata, C. D. Carlo, M. Martini, L. Piras, M. Sartore, C. Nicolini, “Characterization of silicon transducers with Si3N4 sensing surfaces by an AFM and a PAB system,” Sens. Actuators, B, Vol.24-25, pp.889-893, 1995. [17] C. Diekmann, C. Dumschat, K. Cammann, M. Knoll, “Disposable reference electrode,” Sens. Actuators, B, Vol. 24-25, pp.276-278, 1995. [18] P. Neuzil, “ISFET integrated sensor technology,” Sens. Actuators, B, Vol. 24-25 pp.232-235, 1995. [19] C. Cane, A. Gotz, A. Merlos, I. Gracia, A. Errachid, P. Losantos, E. L. Tamayo,“Multilayer ISFET membranes for microsystems applications,” Sens. Actuators, B, Vol.35-36, pp.136-140, 1996. [20] F. Seker, K. Meeker, T. F. Kuech, and Arthur B. Ellis, “Surface Chemistry of Prototypical Bulk II-VI and III-V Semiconductors and Implications for Chemical Sensing,” Chem. Rev, Vol.100, pp.2505-2536, 2000. [21] J. C. Chou, C. N. Hsiao, “Drift behavior of ISFETs with a-Si : H-SiO2 gate insulator, ” Mater. Chem. Phys, Vol.63, pp.270-273, 2000. [22] Y. Cui, Q. Wei, H. Park and C. M. Lieber, “Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species,” Science, Vol. 293, pp.1289-1292, 2001. [23] Y. Cui, Z. Zhong, D. Wang, W. U. Wang, and C. M. Lieber, “High Performance Silicon Nanowire Field Effect Transistors,” Nano Lett, Vol.3, pp.149-152, 2003. [24] Y. Chen, X. Wang, S. Erramilli, and P. Mohanty, “Silicon-based nanoelectronic field-effect pH sensor with local gate control,” Appl. Phys. Lett, Vol.89, pp.223-512, 2006. [25] E. Stern, J. F. Klemic, D. A. Routenberg, P. N. Wyrembak, D. B. T. Evans, A. D. Hamilton, D. A. LaVan,T. M. Fahmy and M. A. Reed, “Label free immunodetection with CMOS compatible semiconducting nanowires,” Nature, Vol. 445, pp.519-522, 2007. [26] C. Halte, G. Delapierre, G. Costa, T. Fodurnier, J. Buckley, M. Gely, B. D. Salvo, T. Baron and F. Vine, “Top-down Fabrication of Si Nanowire and Fully Automated Test Platform: Application to pH Sensor,” Phealth, 2008. [27] M. Wipf, “Dual-gated field effect transistors for sensing applications,” University of Basel Department of Physics Master thesis, 2010. [28] 尹邦躍,“奈米時代, ” 五南圖書, 2002. [29] 薛漢鼎, 翁敏航, 林育德, 湯淵富, 蔡來福, 洪茂峰, 戴寶通, “沉積二氧化 矽薄膜之化學氣相控制,” 奈米通訊第十一卷第十一期, 2004. [30] 吳昌崙, 張景學, “半導體製造技術, ” pp.104-109, 新文京開發, 2003. [31] D. E. Yates, S. Levine and T. W. Healy, “Site-binding model of the electrical double layer at the oxide/water interface,” J. Chem. Soc, Vol. 70, pp.1807- 1818, 1974 [32] 莊達人, “VLSI製造技術,” pp.46-68, 高立圖書, 2006. [33] 龍文安, “半導體微影技術,” pp.35-45, 五南圖書, 2004. [34] 施敏, “半導體元件物理與製作技術,” 高立圖書, 1997. [35] S.P.L. Sorenson, “Enzyme Studies II. The Measurement and Meaning of Hydrogen Ion Concentration in Enzymatic Processes,” Biochemische Zeitschrift, Vol.21, pp.131-200, 1909. [36] J. A. V. Butler, “Studies in heterogeneous equilibria. Part II.—The kinetic interpretation of the nernst theory of electromotive force,” Trans. Faraday Soc, Vol.19, pp.729-733, 1924 [37] H. Kamimura, “Nickel silicide contact for Silicon Nanowire FET,” Iwai Laboratory Department of Electronics and Applied Physics Tokyo Institute of Technology, Master thesis, 2009. [38] B. E. Deal and A. S Grove, “General Relationship for the Thermal Oxidation of Silicon,” J. Appl. Phys, Vol.36, pp.3770-3778, 1965. [39] 陳豪育, “國家奈米元件實驗室90奈米Silicon CMOS平台,” 2009. [40] U. Hashim1, A. Rasmi and S. Sakrani, “SOI based nanowire single-electron transistors: design, simulation and process development,” Sci. Simu, Vol.1, pp.33-47, 2007. [41] 林鴻志, 蘇俊榮, 徐行徽, 王子銘, 洪振家, 蔡銑泓, “矽奈米線之製備與相 關元件之研製與分析,” 行政院國家科學委員會補助專題研究計畫, 2006. [42] S. E. Thompson et al, “A 90-nm logic technology featuring strained-silicon,” IEEE Trans. Electron devices, Vol.51, pp.1790-1797, 2004. [43] 國家實驗研究院儀器科技研究中心, “微機電系統技術與應用,” 全華圖書, 2007 . [44]
dc.description.abstract本研究發展具有高靈敏、即時感測及可長時間重複使用的矽奈米線pH感測器。此pH感測器由兩個主要部份所組成,(1)透過半導體製程並覆蓋薄氧化層的矽奈米線;(2)透光性良好的聚二甲基矽氧烷(Polydimethylsiloxane, PDMS)微流道。並聯三根矽奈米線和五根矽奈米線兩種型式pH感測器被研製,量測不同pH濃度下,電阻值之改變;並聯三根矽奈米線pH感測器,量測pH值3至10,其電阻變化由850 kΩ變化至400 kΩ。每增加一個pH值之電阻百分比為10.4%;並聯五根矽奈米線pH感測器,當pH值由3變化至10時,電阻則由36.2kΩ變化至32.2 kΩ,每增加一個pH濃度值的電阻百分比為則為1.51%。zh_TW
dc.description.abstractThis study presents the fabrication of silicon nanowire pH sensors with highly- and instantly-sensitive and repeatedly-used properties. The silicon nanowire pH sensors are composed of two main parts: (1) the silicon nanowires covered by a thin oxide layer using semiconductor process, (2) the micro channel with good transmittance. Three silicon nanowires in parallel and five silicon nanowires in parallel pH sensors are fabricated. The resistance change of the pH sensors are measured under different pH values. The experimental results showed that the resistance of the three nonowires pH sensor changed from 850 to 400 kΩ as the pH varied from 3 to 10, and the percentage of the resistance change to each pH was about 10.4%. The resistance of the five nanowires pH sensor varied from 36.2 to 32.2 kΩ in the pH range of 3-10, and the percentage of the resistance variation to each pH was about 1.51%.en_US
dc.description.tableofcontents致謝 i 摘要 ii Abstract iii 目錄 iv 圖目次 v 表目次 vii 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.3 研究動機 4 第二章 pH感測器的感測原理 6 2.1矽奈米線鍵結 6 2.2奈米線感測 7 2.3 pH感測器的構造 13 第三章 pH感測器的製作 21 3.1 Nanowires製作 21 3.2微流道製作 24 3.3系統組裝 27 3.4結果與討論 28 第四章 pH感測器的量測 32 4.1實驗架設 32 4.2量測結果 38 4.3結果與討論 46 第五章 結論與未來展望 48 參考文獻 50zh_TW
dc.subjectSilicon nanowiresen_US
dc.subjectpH sensoren_US
dc.subjectMicro channel.en_US
dc.titleSilicon Nanowire pH Sensorsen_US
dc.typeThesis and Dissertationzh_TW
item.openairetypeThesis and Dissertation-
item.fulltextno fulltext-
Appears in Collections:機械工程學系所
Show simple item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.