Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/2428
標題: 比較流體聚焦與T型微流道生成乳化液滴之數值模擬
Numerical investigation of droplet emulsion in flow-focusing and T-junction microfluidic devices
作者: 劉建伯
Liu, Chien-Po
關鍵字: flow-focusing;流體聚焦;T-junction;microfluidic emulsion;surface energy;pressure work;kinetic energy;VOF;T型;微流體乳化;表面能;壓力功;動能;VOF
出版社: 機械工程學系所
引用: Akhtar A., Pareek V., and Tad´e M., “CFD Simulations for Continuous Flow of Bubbles through Gas-Liquid Columns: Application of VOF Method,” Chemical Product and Process Modeling, Vol. 2, No. 1, 2007, Article ID 9. Antonietti M., and Tauer K., “Ninety Years of Polymer Latexes and Heterophase Polymerization: More Vital than Ever,” Macromolecular Chemistry and Physics, Vol. 204, No.2, 2003, pp. 207-219. Beskok A., and Karniadakis G. E., Microflows: Fundamentals and Simulation, Springer-Verlag New York Inc., 2002, pp. 40-62. Brackbill J. U., Kothe D. B., and Zemach C., “A Continuum Method for Modeling Surface Tension,” Journal of Computational Physics, Vol. 100, 1992, pp. 335-354. Bringer M. R., Gerdts C. J., Song H., Tice J. D., and Ismagilov R. F., “Microfluidic Systems for Chemical Kinetics that Rely on Chaotic Mixing in Droplets,” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 362, 2004, pp. 1087-1104. Chen J. M., Chen C. Y., and Liu C. H., “Pressure Barrier in an Axisymmetric Capillary Microchannel with Sudden Expansion,” Japanese Journal of Applied Physics, Vol. 47, No. 3, 2008, pp. 1683-1689. Christopher G. F., Noharuddin N. D., Taylor J. A., and Anna S. L., “Experimental Observations of the Squeezing-to-Dripping Transition in T-shaped Microfluidic Junctions,” Physical Review E, Vol. 78, 2008, Article ID 036317. Cramer C., Fischer P., and Windhab E. J., “Drop Formation in a Co-Flowing Ambient Fluid,” Chemical Engineering Science, Vol. 59, 2004, pp. 3045-3058. Cubaud T., and Mason T. G., “Capillary Threads and Viscous Droplets in Square Microchannels,” Physics of Fluids, Vol. 20, No. 5, 2008, Article ID 053302. De Menech M., Garstecki P., Jousse F., and Stone H. A., “Transition from Squeezing to Dripping in a Microfluidic T-shaped Junction,” Journal of Fluid Mechanics, Vol. 595, 2008, pp. 141-161. DeMello A. J., “Control and Detection of Chemical Reactions in Microfluidics Systems,” Nature, Vol. 442, 2006, pp. 394-402. Doku G. N., Verboom W., Reinhoudt D. N., and Berg A. V. D., “On-Microchip Multiphase Chemistry—A Review of Microreactor Design Principles and Reagent Contacting Modes,” Tetrahedron, Vol. 61, 2005, pp.2733-2742. Edgar J. S., Pabbati P. P., Lorenz R. M., He M., Fiorini G. S., and Chiu D. T., “Capillary Electrophoresis Separation in the Presence of an Immiscible Boundary for Droplet Analysis,” Analytical Chemistry, Vol. 78, No. 19, 2006, pp. 6948-6954. Fluent Inc., FLUENT 6.3. user’ s manual, Fluent Inc. Lebanon, NH, 2006. Garstecki P., “Formation of Droplets and Bubbles in Microfluidic Systems,” Microfluidics Based Microsystems: Fundamentals and Applications, Springer Science + Business Media B.V., edited by S. Kakaç et al., 2010, pp. 163-181. Garstecki P., Fuerstman M. J., and Whitesides G. M., “Nonlinear Dynamics of a Flow-Focusing Bubble Generator: An Inverted Dripping Faucet,” Physical Review Letters, Vol. 94, No. 23, 2005b, Article ID 234502. Garstecki P., Fuerstman M. J., Stone H. A., and Whitesides G. M., “Formation of Droplets and Bubbles in a Microfluidic T-junction—Scaling and Mechanism of Break-up,” Lab on a Chip, Vol. 6, 2006, pp. 437-446. Garstecki P., Stone H. A., and Whitesides G. M., “Mechanism for Flow-Rate Controlled Breakup in Confined Geometries: A Route to Monodisperse Emulsions,” Physical Review Letters, Vol. 94, No. 16, 2005a, Article ID 164501. Haeberle S., Zengerle R., and Ducrée J., “Centrifugal Generation and Manipulation of Droplet Emulsions,” Microfluidics and Nanofluidics, Vol. 3, 2006, pp. 65-75. Hartland S., Surface and Interfacial Tension: Measurement, Theory and Applications, Marcel Dekker Inc., 2004, pp. 149-179. Hirt C. W., and Nichols B. D., “Volume of fluid (VOF) Method for the Dynamics of Free Boundaries,” Journal of Computational Physics, No. 39, 1981, pp. 210-225. Jeon N. L., Dertinger S. K. W., Chiu D. T., Choi I. S., Stroock A. D., and Whitesides G. M., “Generation of Solution and Surface Gradients Using Microfluidic Systems,” Langmuir, Vol. 16, No. 3, 2000, pp. 8311-8316. Kockmann T., Kiefer T., and Engler. M., “Silicon Microstructures for High Throughput Mixing Devices,” Microfluidics and Nanofluidics, Vol. 2, No. 4, 2006, pp. 327-335. Lucchetta E. M., Lee J. H., Fu L. A., Patel N. H., and Ismagilov R. F., “Dynamics of Drosophila Embryonic Patterning Network Perturbed in Space and Time Using Microfluidics,” Nature, Vol. 434, 2005, pp. 1134-1138. Malloggi F., Vanapalli S. A., Gu H., Ende D., and Mugele F., “Electrowetting-Controlled Droplet Generation in a Microfluidic Flow-Focusing Device,” Journal of Physics: Condensed Matter, Vol. 19, 2007, Article ID 462101. Mezzenga R., Schurtenberger P., Burbridge A., and Michel M., “Understanding Foods as Soft Materials,” Nature Materials, Vol. 4, No. 10, 2005, pp. 729-740. Mollet H., and Grubenmann A., Formulation Technology: Emulsions, Suspensions, Solid Forms, Wiley-VCH Verlag GmbH, Weinheim, 2001. Munson B. R., Young D. F., and Okiishi T. H., Fundamentals of Fluid Mechanics, New York: Wiley, 2006. Patel M. K., and Markatos N. C., “An Evaluation of Eight Discretization Schemes for Two-Dimensional Convection-Diffusion Equations,” International Journal for Numerical Methods in Fluids, Vol. 6, No. 3, 1986, pp. 129-153. Qian D., and Lawal A., “Numerical Study on Gas and Liquid Slugs for Taylor Flow in a T-Junction Microchannel,” Chemical Engineering Science, Vol. 61, 2006, pp.7609-7625. Sang L., Hong Y., and Wang F., “Investigation of Viscosity Effect on Droplet Formation in T-shaped Microchannels by Numerical and Analytical Methods,” Microfluidics and Nanofluidics, Vol. 6, 2009, pp. 621-635. Tadros T. F., “Industrial Applications of Dispersions,” Advances in Colloid and Interface Science, Vol. 46, 1993, pp. 1-47. Tan J., Xu J. H., Li S.W., and Luo G.S., “Drop Dispenser in a Cross-Junction Microfluidic Device: Scaling and Mechanism of Break-up,” Chemical Engineering Journal, Vol. 136, 2008, pp. 306-311. Teh S. Y., Lin R., Hung L. H., and Lee A. P., “Droplet Microfluidics,” Lab on a Chip, Vol. 8, 2008, pp. 198-220. Tome M. F., Filho A. C., Cuminato J. A., Mangiavacchi N., and McKee S., “GENSMAC3D: a Numerical Method for Solving Unsteady Three-Dimensional Free Surface Flows,” International Journal for Numerical Methods in Fluids, Vol. 37, 2001, pp. 747-796. Tung K. Y., Li C. C., and Yang J. T., “Mixing and Hydrodynamic Analysis of a Droplet in a Planar Serpentine Micromixer,” Microfluidics and Nanofluidics, 2009, s10404-009-0415-8. Wu L., Tsutahara M., Kim L. S., and Ha M. Y., “Numerical Simulations of Droplet Formation in a Cross-Junction Microchannel by the Lattice Boltzmann Method,” International Journal for Numerical Methods in Fluids, Vol. 57, 2008, pp. 793-810. Xu J. H., Li S. W., Tan J., and Luo G. S., “Correlations of Droplet Formation in T-junction Microfluidic Devices: From Squeezing to Dripping,” Microfluidics and Nanofluidics, Vol. 5, 2008, pp. 711-717. Xu J. H., Luo G. S., Li S. W., and Chen G. G., “Shear Force Induced Monodisperse Droplet Formation in a Microfluidic Device by Controlling Wetting Properties,” Lab on a Chip, Vol. 6, 2006, pp. 131-136. Youngs D.L., Time-Dependent Multi-material Flow with Large Fluid Distortion, in Numerical Methods for Fluid Dynamics, edited by Morton K. W. and Baines M. J., Academic Press, 1982, pp. 273-285. Yu Z., Hemminger O., and Fan L. S., “Experiment and Lattice Boltzmann Simulation of Two-Phase Gas–Liquid Flows in Microchannels,” Chemical Engineering Science, Vol. 62, 2007, pp. 7172-7183. Zagnoni M., Anderson J., and Cooper J. M., “Hysteresis in Multiphase Microfluidics at a T-Junction,” Langmuir, Vol. 26, No. 12, 2010, pp. 9416-9422. 吳鉉忠, 壓電式微液滴噴射數學模擬系統之開發與實驗研究, 國立成功大學博士論文, 2004. 林祐駿, T 型微流道乳化液滴生成與控制之研究, 國立中興大學碩士論文, 2008. 莊育賢, 撞擊在乾玻璃面上變形液滴之數值模擬, 國立中興大學碩士論文, 2009. 郭名哲, 利用靜態與旋轉十字型微流道生成乳化液滴可視化實驗, 國立中興大學碩士論文, 2009.
摘要: 
利用微流道生成微奈米乳化液滴與液滴內快速混合的應用中,流體聚焦與 T 型是經常使用的微流道結構。但是,鮮少有人比較兩流道對微流體乳化現象,以及液滴生成過程中消散相混合現象的差異。本研究利用三維有限體積數值法,搭配 VOF 模組,分別模擬流體聚焦與 T 型微流道生成乳化液滴現象,並導入物質傳遞方程式,比較兩流道對於液滴內混合現象的影響。藉由消散相流體的表面能、壓力功、動能,以及流體界面的變化,分析液滴生成的過程包括成長、拉伸、斷裂與縮回等四階段。成長期消散相排開連續相進入流道,表面能緩緩上升,動能降至最小值;拉伸期流體界面大幅度的彎曲變形,並往下游流道拉伸,表面能與動能迅速上升,壓力功降至極小值;斷裂期消散相斷裂生成液滴,能量變化達最大值;縮回期消散相往上游縮回,表面能與動能往下降,並開始下一次成長期。模擬結果發現在 Squeezing 與 Dripping 型態,流體聚焦比 T 型流道生成的液滴直徑約小 6%,在 Jetting 型態則是約小 19%。除了 Jetting 之外,其他生成型態顯示流體聚焦比 T 型流道的壓力功變化幅度約大 26%。並發現兩流道的消散相動能上升過程非常相近,但是在斷裂期與縮回期,流體聚焦的動能起伏明顯比T型的劇烈。關於液滴內混合現象的差別,雖然流體聚焦的消散相生成一對明顯的渦漩,T 型則呈現單一個明顯的渦漩。但是,流體聚焦生成的液滴的混合效率比 T 型約小 64%,顯示渦漩對 T 型流道的液滴內混合的助益遠大於流體聚焦流道。

In this investigation, the three-dimensional finite volume method (FVM) along with the volume of fluid (VOF) model was employed to simulate droplet formation in flow-focusing and T-junction microfluidics. Oil was taken as the continuous phase fluid and glycerol solution as the dispersed fluid to form water-in-oil droplets. In addition, the species equation was solved for comparison of binary mixing within the droplets generated during the emulsion process for both the flow-focusing and T-junction microfluidics. The mechanism of droplet emulsion is analyzed in terms of variations of energy for the dispersed phase fluid. It is found that the emulsion process can generally be divided into four stages, namely growth, elongation, break-up and shrinkage, according to the variations of kinetic energy, surface energy and pressure work computed for an entire period of forming an individual droplet. Moreover, the images of droplet formation in different types, including squeezing, dripping and jetting, were discussed with the energy variations. It is also found that droplets formed in a T-junction device are larger in size than that in a flow-focusing device, especially in the jetting regime. The simulations for two fluids mixed within the droplets show that the mixing efficiency for those formed in the T-junction always exceeds in the flow-focusing. This is mainly due to the fact that a pair of symmetric vortices developed within the droplets of dispersed phase fluids in the flow-focusing device while only one in the T-junction device that largely helps the advection of the fluids to be mixed.
URI: http://hdl.handle.net/11455/2428
其他識別: U0005-0911201016324900
Appears in Collections:機械工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.