Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/2434
標題: 甲醇-水蒸汽重組產氫整合反應器性能之實驗探討
Experimental study on the Performance of Integrated Methanol- Steam Reforming Reactor for Hydrogen Production
作者: 林毓勝
Lin, Yu-Sheng
關鍵字: compact reactor;微反應器;methanol-steam reforming (MSR);patterned microchannel;inserted catalyst layer;methanol conversion;甲醇蒸氣重組;微流道;置入式觸媒層;甲醇轉化率
出版社: 機械工程學系所
引用: 1. A. Karim, J. Bravo, D. Gorm, T. Conant, A. Datye, Comparison of wall-coated and packed-bed reactors for steam reforming of methanol, Catalysis Today 110 (2005) 86-91. 2. R. Peters, H. G. Düsterwald, B. Höhlein , Investigation of a methanol reformer concept considering the particular impact of dynamics and long-term stability for use in a fuel-cell-powered passenger car, J. Power Sources 86 (2000) 507-514. 3. Y. Tang, W. Zhou, M. Pan, H. Chen, W. Liu, Hao Yu, Porous Copper fiber sintered felts: An innovative catalyst support of Methanol steam reformer for hydrogen production, Int. J. Hydrogen Energy 33 (2008) 2950-2956. 4. W. Choi, S. Kwon, H. Dong shin, Combustion characteristics of hydrogen-air premixed gas in a sub-millimeter scale catalytic combustor, Int. J. Hydrogen Energy 33 (2008) 2400-2408. 5. N. E. Fernandes, Y. K. Park, D. G. Vlachos, The autothermal behavior of platinum catalyzed hydrogen oxidation: experiments and modeling, Combustion and Flame 118 (1999) 164-178. 6. C. H. Leu, S. C. King, C. C. Chen, J.M. Huang, S. S. Tzeng, I-Hun Liu, W. C. Chang, Investigation of the packed bed and micro-channel bed for methanol catalytic combustion over Pt/Al2O3 catalysts, Applied Catalysis A:General XXX(2010) XXX-XXX. 7. Li. Pan, S. Wang, Methanol steam reforming in a compact plate-fin reformer for fuel-cell system, Int. J. Hydrogen Energy 30 (2005) 973-979. 8. J. Y. Won, H. K. Jun, M. K. Jeon, S. I. Woo Performance of microchannel reactor combined with combustor for methanol steam reforming, Catalysis Today 111 (2006) 158-163. 9. J. M. Sohn, Y. C. Byun, J. Y. Cho, J. Choe, K. H. Song, Development of the integrated methanol fuel processor using micro-channel patterned devices and its performance for steam reforming of methanol, Int. J. Hydrogen Energy 32 (2007) 5103-5108. 10. G. G. Park, S. D. Yim, Y. G. Yoon, W. Y. Lee, C.S. Kim, D. J. Seo, Hydrogen production with integrated microchannel fuel processor for portable fuel cell systems, Catalysis Today 145(2005) 702-706. 11. S. K. Ryi, J. S. Park, S. H. Choi, S H. Cho, S. H. Kim, Novel micro fuel processor for PEMFCs with heat generation by catalytic combustion, Chemical Engineering J. 113(2005) 47-53. 12. X. Mu, L. Pan, N. Liu, C. Zhang, S. Li, G. Sun, S. Wang, Autothermal reforming of methanol in a mini-reactor for aminiature fuel cell, Int. J. Hydrogen Energy 32 (2007)3327-3334. 13. Y. Wang, Z. Zhou, W. Yang, J. Zhou, J. Liu, Z. Wang, K. Cen, Combustion of hydrogen-air in micro combustors with catalytic Pt layer, Eng. Con. And Mana. 51(2010)1127-1133 14. T. Kim , S. Kwon, MEMS fuel cell system integrated with a methanol reformer for a portable power source, Sensors and Actuator A:Physical XXX(2008)XXX-XXX. 15. A. D. Stroock, S. K. W. Dertinger, A. Ajdari, I. Mezic, H. A.Stone, G. M. Whitesides, Chaotic Mixer for Microchannels, SCIENCE VOL 295 JANUARY2002. 16. K. Yoshida, S. Tanaka, H. Hiraki and M. Esashi , A micro fuel reformer integrated with a combustor and a microchannel evaporator, J. Micromech. And Microeng. 16(2006) S191-S197. 17. T. Terazaki, M. Nomura, K. Takeyama, O. Nakamura, T. Yamamoto, Development of multi-layered microreactor with methanol reformer for small PEMFC, J. Power Sources 145 (2005) 691-696. 18. P. Reuse, A. Renken, K. H. Santo, O. Görke, K. Schubert,Hydrogen production for fuel cell application in an autothermal micro-channel reactor, Chemical Engineering J. 101(2004) 133-141. 19. J. D. Holladay, J.S. Wainright, E.O. Jones, S.R. Gano, Power generation using a meso scale fuel cell integrated with a microscale fuel processor, J. Power Sources 130 (2004) 111-118. 20. N. I. Kim, S. Kato, T. Kataoka, T. Yokomori, S. Maruyama, T. Fujimori, K. Maruta, Flame stabilization and emission of small Swiss-roll combustor as heaters, Combustion and Flame 141(2005)229-240. 21. J. A. Federici, D.G. Norton, T. Brüggemann , K. W. Voit, E. D. Wetzel, D.G. Vlachos, Catalytic microcombustors with integrated thermoelectric elements for portable power production , J. Power Sources 161 (2006) 1469-1478. 22. D. G. Norton, E. D. Wetzel, and D. G. Vlachos, Thermal Management in catalytic microreactors , Ind. Eng. Chem. 45 (2006) 76-84. 23. P. J. de Wild, M.J.F.M. Verhaak, Catalytic production of hydrogen from methanol, Catalysis Today 60(2000) 3-10. 24. M. Haruta, A. Ueda, S. Tsubota, R.M. Torres Sanchez, Low-temperature catalytic combustion of methanol and its decomposed derivatives over supported gold catalysts, Catalysis Today 29 (1996) 443-447. 25. T. Kim, S. Kwon, Design, fabrication and testing of a catalytic microreactor for hydrogen production, J. Micromech.Microeng. 16 (2006) 1760-1768. 26. G. Guan, K. Kusakabe, M. Taneda, M. Uehara, H. Maeda, Catalytic combustion of methanol over Pd-based catalyst supported on a macroporous alumina layer in a microchannel reactor, Chemical Engineering J. 144 (2008) 270-276. 27. K. Tomishige, S. Kanazawa, S. I. Ito, K. Kunimori, Catalyst development for direct heat supply from combustion to reforming with CO2 and O2, Applied Catalysis A: General 244 (2003) 71-82. 28. Taegyu Kim, Micro methanol reformer combined with a catalytic combustor for a PEM fuel cell, Int. J. Hydrogen Energy 34(2009)6790-6798. 29. 林昇佃、徐子隆等編輯,燃料電池:新世紀能源,滄海出版社出版,2004。 30. 李秉傑、邱宏明和王奕凱,非均勻系催化原理與應用,渤海堂文化,1988。 31. 劉毅弘、顏貽乙等, 燃料電池微小型重組器及一氧化碳轉化技術。 32. 安捷倫科技有限公司LSCA訓練中心, Agilent 6890 GC 氣相層析儀軟體操作 ,2006年6月。 33. 吳國華, 超音波物化於燃料電池甲醇重組製氫之研究 ,國立成功大學航太工程研究所碩士論文,2003。 34. 高詠翔, 利用微流道反應器進行甲醇蒸氣重組產氫之實驗探討 ,國立中興大學機械研究所碩士論文,2008。 35. 何益豪, 甲醇重組器供熱系統之實驗探討 ,國立中興大學機械研究所碩士論文,2009。
摘要: 
本研究整合甲醇重組器及燃燒器,並進行實驗探討觸媒燃燒反應及蒸汽重組反應。燃燒器使用甲醇為燃料、白金為觸媒,探討白金觸媒loading量、燃料/空氣混合比及啟動溫度等,對觸媒燃燒反應之影響。並對甲醇-水蒸氣重組器,使用觸媒CuO/ZnO/Al2O3,探討不同觸媒塗佈方式及反應物流場對重組反應效率的影響。
本實驗設計之反應器共有兩組,一組係利用CNC加工出蛇型流道,並在同樣面積下去除流道,加工出深度與流道相同之凹槽,作為對照組;另一組則加工出魚骨流道,並依照相同理念,把流道去除。此目的主要是為探討流場之影響。在觸媒塗佈上,除塗佈於壁面及流道上外,另一設計為將觸媒塗佈於不鏽鋼網後,放置於反應區中,以比較塗佈方式對重組反應之影響。
實驗結果顯示,燃料/空氣混合比對觸媒燃燒有顯著影響,而觸媒loading量對燃燒溫升效果則無顯著相關性,在不同觸媒量下其溫升範圍是差不多的。而在重組反應方面,在相同反應溫度範圍,具有流道設計之反應器,因反應流體具有較長之滯留時間,因此其甲醇轉換率較佳。

In this study, miniature scale stainless-made compact reactors for hydrogen production from methanol-steam reforming (MSR) is constructed by integrating vaporizer, reformer, and combustor into a single unit. The reactors with sizes of 60 mm 50 mm 12 mm and 60 mm 50 mm 12 mm are built and tested in this study. The energy required in MSR is provided by heat generated from the platinum (Pt)-catalytic methanol combustion in the combustor while the CuO/ZnO/Al2O3 is used as the catalyst for the MSR.
Three different reformer designs: patterned microchannel with surface coated catalyst on the channel wall, single plain channel with catalyst coated on the bottom channel wall, and inserted stainless mesh layer coated with catalyst, are experimentally tested to identify the flow and heat transfer effects on the reactor performance. Because of longer reactant residence time and more effective heat transfer, the experimental results show that the methanol conversion of reformer with patterned microchannel is about 15% higher than the reformer with inserted catalyst layer which has the lowest methanol conversion efficiency among the three reformers studied. This indicated that for compact reactors, reformer with complicated and costly patterned microchannel design may not be necessary since the performance enhancement is not significant. Although the performance of reformer with inserted catalyst layer is not as good as the reformer with patterned microchannels, it provides the convenience in catalyst replacement when catalyst is aged from the practical application point of view.
URI: http://hdl.handle.net/11455/2434
其他識別: U0005-1108201012492900
Appears in Collections:機械工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.