Please use this identifier to cite or link to this item:
標題: 有限元素網格和元素種類對拓樸最佳化之影響
Influence of element types and meshes on topology optimization
作者: 林庭瑋
Lin, Ting-Wei
關鍵字: Topology optimization;拓樸最佳化
出版社: 機械工程學系所
引用: 1. Bendsøe M.P. and Kikuchi N.,“ Generating Optimal Topologies in Structural Design Using a Homogenization Method ”, Computer Methods in Applied Mechanics and Engineering, Vol. 71, PP. 197-224, 1988. 2. Bendsøe M.P.,“Optimal shape Design as Material Distribution Problem”, Structural Optimization, Vol.1, PP. 193-202, 1989. 3. Mlejnek H.,“Some Aspects of the Genesis of structures”, Structural Optimization, Vol.5, PP. 64-69, 1992. 4. Wang B.P., Lu C.M. and Yang R.J.,“Topology Optimization Using MSC/NASRAN”, MSC User Conference, 1994. 5. 陳志賢,“結構形勢最佳化設計”,國立中興大學機械工程研究所碩士論文,民國84年6月。 6. 林嘉洋,“可變設計空間的形勢最佳化”,國立中興大學機械工程研究所碩士論文,民國87年6月。 7. 鐘炳春,“ANSI反齒鏈片之最佳化設計”,國立中興大學機械工程研究所碩士論文,民國93年12月。 8. Yang R. J. and Chuang C. H.,“Optimal Topology Design Using Linear Programming”,Computer & Structures, Vol.52, PP. 265-275, 1996. 9. Vanderplaats G.,“Very large scale optimization”,presented at the 8th AIAA/USAF/NASA/ISSMO Symposium at Multidisciplinary Analysis and Optimization, Long Beach, CA September 6-8, 2000. 10. 吳世昌,“結構多目標最佳化形態設計”,國立中興大學機械工程研究所碩士論文,民國85年6月。 11. Diaz A. and Sigmund O.,“Checkerboard patterns in layout optimization”, Structural Optimization, Vol.10, PP. 40-45, 1995. 12. Matsui K. and Terada K.,“Continuous approximation of material distribution for topology optimization”,International Journal for Numerical Methods in Engineering, Vol.59, PP.1925-1944, 2004. 13. Xie Y.M. and Steven G.P.,“A Simple evolutionary procedure for structural optimization”,Computer&Structures, Vol.49, PP. 885-896, 1993 14. Kane C. and Schoenauer M.,“Tological optimum design using genetic algorithms”,Control and Cybernetics, Vol.25, PP. 1059-1088, 1996. 15. Liu X., Yi W.J., Li Q.S. and Shen P.S.“ Genetic evolutionary structural optimzation”,Journal of Constructional Steel Research, Vol.64, PP. 305-311, 2008. 16. Luh G.C. and Lin C.Y.,“Structural topology optimization using ant colony optimization algorithm”,Applied Soft Computing, Vol.9, PP. 1343-1353, 2009. 17. 羅錦興,“田口品質工程指引”,中國生產力中心,民國88年4月。 18. 黎正中,“穩健設計之品質工程”,台北圖書有限公司,民國82年1月。 19. 陳耀茂,“直交表實驗計劃法”,五南圖書出版股份有限公司,民國91年7月。 20. 李輝煌,“田口方法─品質設計的原理與實務”,高立圖書有限公司,民國92年3月。 21. Hsu Y. L., Hsu M. S. and Chen C. T.,“Interpreting results from topology optimization using density contours”,Computers and Structures, Vol 79, PP.1049-1058, 2001. 22. Guo X. and Gu Y. X.,“A new density-stiffness interpolation scheme for topology optimization of continuum structures”,Engineering Computations, Vol 21, PP.9-22, 2004.

The topology optimization under material constraint is studied in this thesis. The finite element models are made up of different meshes and different types of elements. Taguchi method is used to determine the better element type and meshes used for topology optimization. Four levels of 2D elements used include three types of triangular elements and one type of quadrilateral element. Two levels of 3D element types contain tetrahedral and hexagonal elements. There are four levels of 2D element meshes and five levels of 3D element meshes. These levels represent mesh angles in the design space. Four indices are developed in this thesis to judge the topologies generated. A minimum numbers of experiments based on Taguchi's orthogonal table are performed to determine the better element type and meshes. The final topology is further modified manually to yield a smooth and useful structure for practical use.
MSC/NASTRAN and MSC/PATRAN are used to analyze the structures and do the pre- and post- processes, respectively. The results obtained for each example are compared. MSC/PATRAN is used to show the topologies with better element types and meshes.
其他識別: U0005-1207201014045500
Appears in Collections:機械工程學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.