Please use this identifier to cite or link to this item:
標題: SUS304不銹鋼面銑毛邊生成之研究
Investigation of burr formation on SUS304 stainless steel face milling
作者: 蔡吉隆
Tsai, Chi-Lung
關鍵字: stainless steel;不銹鋼;burr;Taguchi method;毛邊;田口法
出版社: 機械工程學系所
引用: 參考文獻 【1】Gillespie, L.K.(1979).Deburring precision miniature parts. Precision Engineering, 1(4), 189-198. 【2】Olvera, O., & Barrow, G.(1996). An experimental study of burr formation in square shoulder face milling. International Journal of Machine Tools and Manufacture, 36(9), 1005-1020. 【3】Gillespie, L.K., & Blotter, P.T.(1976). The formation and propertyes of Machining burrs. Tran. ASME J. Eng. Ind., 98(1), 66-74. 【4】Gillespie, L.K.(1973). The formation and properties of machining burrs. M. S. Thesis, Utah State University, Logan, UT. 【5】Hashimura, M.(1995). Proposal of Classification for Milling Burrs. ESRC Research Report, university of California at Berkeley. 【6】Lin, T.R.(2000). Experimental study of burr formation and tool chipping in the face milling of stainless steel. Journal of Material Processing Technology, 108, 12-20. 【7】Chern, G.L.(1993). Analysis of Burr Formation and Breakout in Metal Cutting. Ph. D. Thesis, University of California at Berkeley, Berkeley, CA. 【8】Norman, B., & Schmidt(1995). New Standard in Machinable Stainless Steel. American Machinist, 91-94. 【9】Turning Stainless Made Painless, Sandvik Coromant Co., Fair Lawn, NJ. 【10】Sullivan, K. F., & Wright, P. K., & Smith, P. D.(1997). Metallurgical Appraisal of Instabilities Arising in Machining. Metals Technology, 5(part6), 181-189. 【11】Kopac, J.(1998) . Influence of cutting material and coating on tool quality and tool life. Joural of Material Processing Technology, 95-103. 【12】Hashimura M, Hassamontr J, Dornfeld DA(1999). Effect of In-plane Exit Angle and Rake Angles on Burr Height and Thickness in Face Milling Operation. Transactions of the ASME Journal of Manufacturing Science and Engineering, 121(1), 13–19. 【13】李輝煌(民89)。田口方法─品質設計的原理與實務。台北:高立圖書股份有限公司。 【14】Yang, W. H., & Tarng, Y. S.(1998). Design Optimization of Cutting Parameters for Turning Operations Based on the Taguchi Method. journal of materials Processing Technology, 84, 122-129. 【15】蔡宗學、簡文通(民90)。田口法應用於車削SKD61模具鋼之最適條件分析。屏東科技大學學報,10(4),305-314。 【16】陳永正(民87)。6061鋁合金之高速銑削行為與實驗探討。國立中興大學機械工程研究所碩士論文,台中市。 【17】Kishimoto, W., Miyake, T., Yamamoto, A. Yamanaka, K., & Takano, K.(1981). Study of burr formation in face milling. Bulletin of JSPE,15(1), 51–52. 【18】Chern, G.L.(1993). Analysis of Burr Formation and Breakout In Metal Cutting, Ph. D. Thesis, University of California at Berkeley, Berkeley, CA. 【19】Hashimura, M., Hassamontr, J., & Dornfeld, D.A.(1999).Effect of In-plane Exit Angle and Rake Angles on Burr Height and Thickness inFace Milling Operation. Transactions of the ASME Journal of Manufacturing Science and Engineering, 121(1), 13–19. 【20】張明惠(民85)。應用品質工程技術於SS41鋼料面銑切削加工毛邊形成之研究。國立雲林技術學院機械工程技術研究所碩士論文,雲林。 【21】王朝榮、楊世偉(民84)。銑切削加工參數的最佳化。機械月刊,21(七),285-296。 【22】王朝榮(民78)。專家系統在銑切加工上的應用,淡江大學機械工程研究所碩士論文,台北市。 【23】張添盛、孫傳家、俞行宜(民87)。毛邊對企業的影響。金屬工業,32(1),84-91。 【24】汪錫煌(民96)。由加工粗糙度與切屑形狀探討SUS304不鏽鋼的理想銑削條件。國立中興大學機械工程研究所碩士論文,台中市。 【25】陳永信譯(民83)。不銹鋼的加工技術。機械月刊,20(五),236-241。 【26】LMA Annual Report, University of California at Berkeley for 98 &99 【27】MatWeb,。 【28】台灣伊斯卡(ISCAR)股份有限公司面銑刀具型錄,。 【29】TechSolve公司,CutData V2.0 Machining Database Software. 【30】林維新、紀松水編譯(民76)。切削理論。台北:全華科技圖書股份有限公司。 【31】林維新 譯(民72)。銑床加工與問題對策。台北:全華科技圖書股份有限公司。 【32】張渭川 譯(民79)。切削加工技術資料集。機械技術出版社。 【33】唐文聰(民81)。端銑刀使用技術。機械技術出版社。 【34】CUTDATA軟體官方網站,。 【35】International Standard ISO 13715:2000,Technical drawings–Edges of undefined shape–Vocabulary and indications. 【36】湯銘權、趙芝眉編著(民78)。金屬切削原理.全華科技圖書。 【37】Schafer, F.(1975). Entgraten, Krausskopfverlag, Mainz. 【38】徐明堅(民81)。最新切削加工技術。復漢出版社。 【39】蘇朝墩(民89),產品穩健設計-田口品質工程方法的介紹與應用。中華民國品質協會。
本研究結果顯示面銑不銹鋼時,增加轉速、切深與減少進給可減少毛邊高度,而改變出口角度影響較小。減少毛邊高度最佳的製程參數組合為轉速900rpm、進給0.16 mm/tooth、出口角度108°、切深1.5mm。經實際切削後,我們可以發現由最佳切削參數於初期成功獲得較小的毛邊高度,但隨著刀具的磨耗,毛邊的高度也逐步增加,兩者形成明顯正比的趨勢,最佳參數實際切削的結果與預測值間的誤差由11.94%上升到33.83%。由此觀之,建議加工不同種類的材料應注意選用其適合的刀具,如此更能達到減少毛邊生成之目標。

The burrs will definitely appear in mechanical process. In order to avoid the problems caused by burrs, The above problems all indicate that the burrs must be removed during processing. Stainless steel has been widely used in our lives, because it has good tensile strength, fatigue strength, creep and other mechanical properties. Therefore, it is difficult to remove the burrs formed during mechanical process.
In this thesis, 304 stainless steel is the main topic and the application of Taguchi method is used in face milling experiment. I select four factors as the cutting conditions: cutting speed, feed rate, depth of cut and exit angle. In addition, TM101 microscope is used to measure burrs height to acquire the optimal cutting parameters.
The study result shows that the increase in cutting speed, depth of cut and the decrease in feed rate ultimately reduce the burrs height. However, exit angle has little effect on burrs height. We obtain the optimal machining parameters are: cutting speed : 900 rpm, feed rate : 0.16 mm/tooth, exit angle : 108, depth of cut : 1.5 mm. Through actual cutting, I find that the optimal cutting parameters decrease the height of burrs in the initial research stage. Because of the tool wear, burr height is gradually increased. In other words, the tool wear is proportional to burr height. The results of errors between the actual cutting and the predicted value increase from 11.94% to 33.83%. In my conclusion, in order to achieve the goal of decreasing burr height, I suggest that suitable tools should be compatibly applied to different types of materials.
其他識別: U0005-1307201012321900
Appears in Collections:機械工程學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.