Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/2460
DC FieldValueLanguage
dc.contributor沈君洋zh_TW
dc.contributor洪榮芳zh_TW
dc.contributor王啟昌zh_TW
dc.contributor.advisor盧昭暉zh_TW
dc.contributor.author黃炯瑞zh_TW
dc.contributor.authorHuang, Chiung Juien_US
dc.contributor.other中興大學zh_TW
dc.date2011zh_TW
dc.date.accessioned2014-06-05T11:43:24Z-
dc.date.available2014-06-05T11:43:24Z-
dc.identifierU0005-1608201015085300zh_TW
dc.identifier.citation[1]林麗清,塑膠射出成形讀本,復文圖書有限公司,1995,台灣省台南市。 [2]莊達人,VLSI製造技術,高立圖書有限公司,2004,台北市。 [3]Eckert,E.R.G.,and E. Soehngen : Interferometric Studies on the Stability and Transition to Turbulence of a Free Convection Layer Boundary,Proc. Gen.Discuss.Heat Transfer ASME-IME,London,1951. [4]Fishenden,M.and Saunders,O.A., “An Introduction to Heat Transfer”, pp.95-97. Oxford University Press, London, 1950. [5]Bosworth,R.L.C.,“Heat Transfer Phenomena”,John Wiley, New York, pp. 102-104.1952. [6]Husar,R.B.and Sparrow, E.M., “Patterns of Free Convection Flow Adjacent to Horizontal Heated Surfaces”, Int. J. Heat Mass Transfer. Vol.11, pp1206-1028, 1968. [7]Z.Rotem,L.Claassen, Natural convection above unconfined horizontal surfaces, J. Fluid Mech. Vol.39, pp.173-192, 1969. [8]Goldstein,R.J.,E.M.Sparrow,and D.C.Jonnes:Natural convection Mass Transfer Adjacent to Horizontal Plate,Int.J.Heat Mass Transfer,vol.16,pp. 1025-1035,1973. [9]Fujji, T.,and H.Imura:Natural Convection Heat Transfer From a Plate with Arbitary Inclination,Int.J.Heat Mass Transfer, Vol.15,p.755,1972. [10]Al-Arabi, M. and El-Riedy, M.K., “Natural Convection Heat Transfer From Isothermal Horizontal Plates of Different Shapes”, Int. J. Heat Mass Transfer. Vol.19,pp.1399-1404, 1976. [11]Yousef, W.W., Tarasuk, J.D., and Mckeen, W.J. ,“Free Convection Heat Transfer From Upward-Facing Isothermal Horizontal Surfaces” ASME J. Heat Transfer. Vol.104, pp.493-500, 1982. [12]Gray,D. D.,and Giorgini,A.,”The validity of Boussinesq approximation for liquids and gases,”Int.J Heat Mass Transfer,Vol.19,pp.545-554,1976. [13]自動控制系統,Benjamin C.Kuo,大中國出版社,1989,台北市。 [14]J. P. Holman, Heat Transfer, 8rd edition, McGRAW-HILL , 2005. [15]Kirk D.Hagen,Heat Transfer with Application , Prentice Hall nternation Inc,2003. [16]Yunus A. Cengel, “Heat Transfer A Practical Approach,” 2rd edition, McGRAW-HILL , 2004. [17]顏月珠,現代統計學,三民書局,1997,台北市。 [18] ,Heat transfer,東南出版社,1987,台北市。 [19]S.V. Patankar, Numerical Heat Transfer and Fluid Flow,Hemisphere Publishing Corporation, 1972. [20]RT Huang, WJ Shen, CC Wang,Orientation Effect on The Natural Convective Performance of Square Pin Fin Heat Sinks, Int. J. Heat Mass Transfer. Vol. 51, pp.2368-2376, 2008. [21]Wang, J.C., H.S. Huang, and S.L. Chen, Experimental Investigations of Thermal Resistance of a Heat Sink with Horizontal Embedded Heat Pipes, International Communications in Heat and Mass Transfer, Vol. 34, pp. 958-970, 2007. [22]白賜清,工業實驗計劃法,中華民國品質學會,2006,台北市。 [23]蘇朝墩,品質工程中華民國品質學會,2002,台北市。 [24]Handbooks of Fluent, Fluent, Inc,2003. [25]John Neter, William Wasserman, and G.A. Whitmore. Applied Statistics 4rd edition. Allyn and Bacon, 1993.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/2460-
dc.description.abstract本研究主要以各種設計參數(模板幾何位置、塊狀材質、電熱管數量、長度與功率、搭配不同功率、絕熱材料)分析對模板表面溫度以及熱對流係數的影響,以達到模板模型溫度均勻化目標,並進行具圓柱熱源的板狀模具於靜止空氣中的自然對流現象探討。 首先以零維模式計算熱對流係數,利用最小平方法求得自然對流的平均熱對流係數、強制對流的區域的熱對流係數,並與經驗公式比較,再以熱對流係數計算模板的加熱時間,驗證昇溫模式的正確性。模板溫度由控制系統維持穩定溫度,無法確認電熱管功率長度分佈,為了獲得確實電熱管長度功率分佈,故選擇塊狀模型(一維)比對溫度曲線驗證。一維模式將電熱管分成三段,以其發熱功率及長度作為設計參數,合併內能、傳導、對流、溫度分析,建立一維溫度分析程式,計算出在不同金屬物體表面溫度分佈,以做為模板最佳化設計的依據。 利用計算流體力學軟體Fluent模擬圓柱熱源的板狀模具在於靜止空氣中的自然對流現象探討,並與實驗溫度值比對,結果顯示Fluent與實驗有相同的趨勢。最後,使用田口方法合計7個控制因子,分析各種控制因子對模板溫度均勻化的貢獻度,結果顯示電熱管二邊提高功率、幾何偏心對溫度均勻化貢獻最多,依據田口最佳組合結果溫差3℃, 分析後效果有顯助降低69%溫度標準差。zh_TW
dc.description.abstractThis study applied several different design parameters(the mold’s position and materials, number of electrical pipes、length and power, the arrangement of power, the insulation materials) to analysis the surface temperature of template and the effect of the heat convection coefficients in order to get the uniform temperature distribution of the template, furthermore, we also studied the phenomenon of nature convection about the template with a cylindrical heat source in a quiescence air. This study firstly calculate the heat convection coefficient by using zero-dimensional model, and applying the least squares regression method to find out the average heat convection coefficient of both nature and forced part. Then compare these results with experienced equations. By applying the calculated value of heat convection coefficient, this study will compute the time during its heating process to verify the validity of this mathematic model. The mold’s temperature was maintained constant by the control system, because it could not find out the power distribution of the electrical pipes, for the purpose to confirm this power distribution, this study analysis the block shape mold(one dimensional) to verify the temperature distribution curve. Subsequently, it will divide the electrical heating pipe into 3 sections in one dimensional mode, and take the heating power, pipe length as the design parameters and combine the factors of internal energy, conduction, convection, temperature, etc. to establish an one dimensional analysis equation which can be used to calculate the temperature distribution on the different metals. These results could be taken as a basis for the optimal design of the template. By using the fluid dynamic software “Fluent”, it can be used to simulate the natural heat convection on the template with a cylindrical heat source in a static air, and comparing this result with experimental data, it shows both have the same tendency. Finally, this study will use Taguchi Method with 7 controllable factors to analysis the contribution rate of each controllable factors for uniform temperature distribution on the template. The results show while increasing both of the heating power on the two ends of an electrical heating pipe and the offset can get the better contribution rate. According the simulated results from Taguchi Method, the best combination can decrease the standard deviation value from 2.09 to 0.63 Celsius degree which was obtained by the original experiment, it will have 69% advantage on dropping the standard deviation obviously.zh_TW
dc.description.tableofcontents目次 摘要 i 表目次 vii 圖目次 viii 符號表 xi 第一章 緒論 1 1.1前言 1 1.2射出機簡介 2 1.3模板的應用 3 1.4文獻回顧 4 1.5研究動機與方法 10 第二章 模板系統架構說明 11 2.1模板寸尺 11 2.2控制系統架構 12 2.3熱源項說明 13 2.4感溫器精度 14 2.5實驗設備與量測方式 14 2.5.1零維實驗設備 14 2.5.2零維自然對流量測方式 14 2.5.3強制對流量測方式 16 2.5.4一維實驗設備 16 2.5.5一維量測方式 17 2.5.6三維量測方式 17 第三章 零維模式 19 3.1理論模式 19 3.2平板上自然對流 20 3.2.1平板上自然對流實驗結果 20 3.2.2實驗精度說明 23 3.2.3迴歸平均自然對流熱對流係數驗證 23 3.2.4自然對流結果與討論 24 3.3模板昇溫預測 24 3.3.1模板昇溫理論模式 24 3.3.2模板昇溫時間實驗結果 24 3.3.3模板預測昇溫時間結果與討論 25 3.4平板上強制對流 25 3.4.1平板上強制對流理論分析 25 3.4.2平板上強制對流實驗結果 26 3.4.3強制對流結果與討論 28 3.5小結 28 第四章 一維模式 29 4.1理論模式 29 4.2邊界條件 30 4.3程式發展 33 4.4一維實驗結果與討論 34 4.4.1一維均勻熱源溫度分佈 34 4.4.2一維均勻熱源實驗結果與討論 35 4.4.3模擬不同金屬在均勻熱源下溫度之影響 36 4.4.4鋁合金溫度與抗壓性 37 4.4.5改變熱源參數計算與實驗結果 37 4. 5小結 38 第五章 三維模式 40 5.1物理模型 40 5.2數學模型 41 5.3 Boussinesq近似法 41 5.4統御方程式 41 5.5數值方法 42 5.6收斂條件 45 5.7矩形等溫壁 45 5.7.1矩形等溫壁邊界條件 45 5.7.2矩形等溫壁網格劃分 46 5.7.3流場分析 47 5.7.4熱對流係數 47 5.8電熱管對模板施加熱源 50 5.8.1邊界條件 50 5.8.2網格劃分 50 5.8.3流場分析 52 5.8.4靠近壁面流速與剪應力 55 5.8.5熱對流係數 57 5.8.6表面熱通量 59 5.8.7各表面損失功率 60 5.8.8模板表面溫度與實驗比較 60 5.8.9金屬內部溫度 63 5.9小結 64 第六章 田口式實驗計劃法 66 6.1田口實驗簡介 66 6.2參數設計流程 67 6.3模擬後訊號雜訊比 70 6.4 SN變異數分析 71 6.5最佳化溫度 73 6.6小結 73 第七章 結論與未來展望 74 7.1結論 74 7.2未來展望 74 參考文獻 75zh_TW
dc.language.isoen_USzh_TW
dc.publisher機械工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1608201015085300en_US
dc.subjectPlate Type Molden_US
dc.subject板狀模具zh_TW
dc.subjectNatural Convectionen_US
dc.subjectCylindrical heat sourceen_US
dc.subjectCFDen_US
dc.subject自然對流zh_TW
dc.subject圓柱熱源zh_TW
dc.subjectCFDzh_TW
dc.title具內部熱源的板狀模具之熱傳 計算與表面溫度分佈探討zh_TW
dc.titleA Study on the Heat Transfer Characteristic and Surface Temperature Distribution of a Plate Type Mold with Internal Heat Sourceen_US
dc.typeThesis and Dissertationzh_TW
item.languageiso639-1en_US-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.fulltextno fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Appears in Collections:機械工程學系所
Show simple item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.