Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/2477
標題: 使用主從微控制器之全向輪機器人實現
Master-Slave Microcontrollers-Based Controller Implementation for an Omni-Directional Wheeled Robot
作者: 陳陞祐
Chen, Sheng-You
關鍵字: omni-directional wheeled robot;全向輪機器人;microcontroller;微控制器
出版社: 機械工程學系所
引用: [1] T. B. Lauwers, G. A. Kantor, and R. L. Hollis, "A Dynamically Stable Single- Wheeled Mobile Robot with Inverse Mouse-Ball Drive," IEEE Int. Conf. Robotics and Automation, pp. 2884-2889, 2006. [2] T. B. Lauwers, G. A. Kantor, and R. L. Hollis, "One is Enough," 12th Int. Symp. Robotics Research, San Francisco, CA, pp. 12-45, 2005. [3] K. L. Moore and N. S. Flann, "A Six-Wheeled Omnidirectional Autonomous Mobile Robot," IEEE Control Systems Magazine, pp. 53-66, 2000. [4] J. Borenstein, L. Feng, "Measurement and Correction of Systematic Odometry Errors in Mobile Robots," IEEE Trans. on Robotics and Automation, Vol. 12, No. 6, pp. 869-880, 1996. [5] F. G. Pin and S. M. Killough, "A New Family of Omnidirectional and Holonomic Wheeled Platforms for Mobile Robots," IEEE Trans. on Robotics and Automation, Vol. 10, No. 4, pp. 480-489, 1996. [6] H. Asama, M. Sato, L. Bogoni, H. Kaetsu, A. Matsumoto, and I. Endo, "Development of an Omni-Directional Mobile Robot with 3 DOF Decoupling Dive Mechanism," IEEE Int. Conf. on Robotics and Automation, Nagoya, Aichi, Japan, pp. 1925-1930, 1995. [7] R. Balakrishna and A. Ghosal, "Modeling of Slip for Wheeled Mobile Robots," IEEE Trans. on Robotics and Automation, Vol. 11, No. 1, pp. 126-132, 1995. [8] D. J. Dilorenzo, "Design and Implementation of an Omnidirectional Wheeled Robot Motion Control," M.S. Thesis, Massachusetts Institute of Technology, 1988. [9] 蔡寬騰, "全方向輪式機器人之建構及其利用立體視覺與超音波資訊之導航與避障," 國立成功大學機械工程學系,碩士論文,2005. [10] 馮煜鈞, "四全向輪平台導覽型機器人之運動控制、導航與任務執行," 國立中興大學電機學系,碩士論文,2009. [11] 莊仁豪, "全向式三輪機器人之動力學模式與適應控制設計," 國立中興大學機械工程學系,碩士論文,2007. [12] L. A. Zadeh, "Fuzzy Sets," Information and Control, Vol. 8, pp. 338-353, 1965. [13] L.X.Wang, "A Course in Fuzzy Systems and Control," Prentice Hall, 1997. [14] "DMATEK-44B0X開發單板使用手冊," 長高科技,2004 [15] Samsung, S3C44B0X RISC Microcontroller Data Sheet . [16] Microchip, dsPIC30F4011/4012 Data Sheet, 2005. [17] Wikipedia, http://zh.wikipedia.org [18] Philips Semiconductors, The I2C-Bus specification. Version 2.1, 2000. [19] 王崇飛, "位移感測元件簡介," 元智大學最佳化設計實驗室,2000. [20] Analog Devices, AD7541A Data Sheet, 1997. [21] HITACHI, HA17458 Data Sheet, 1998. [22] CSBL900使用手冊, CSIM擎翔實業有限公司 [23] ON Semiconductor, MC7800,MC7800A, NCV7805 Data Sheet, 2005. [24] National Semiconductor, LM117/LM317A/LM317 Data Sheet, 2008. [25] STMicroelectronics, MC34063A Data Sheet, 2000. [26] Microchip, Section 21 Inter-Integrated Circuit (I2C)–dsPIC30F FRM, 2007. [27] Agilent, HCTL-2032, HCTL-2032-SC, HCTL-2022 Data Sheet, 2003. [28] Avago, HCTL-2017 and HCTL-2021 Data Sheet, 2006.
摘要: 
摘 要

本論文研究主題為三輪全向式機器人之低階伺服控制硬體設計製作與控制策略實現。機器人控制器的設計採用主(master)、從(slave)微控制器架構,整合介面電路與計時器中斷、外部訊號中斷、UART中斷和I2C中斷,並經由UART與I2C通訊協定,傳遞主、從微控制器的回授訊號與控制命令。主微控制器使用一顆32位元ARM 7 S3C44B0X微控制器;從微控制器使用三顆16位元dsPIC30F4011微控制器。主微控制器主要負責控制演算法的計算、期望軌跡的設定、各取樣時間點機器人狀態的計算,以及輸出控制命令給從微控制器。從微控制器由其編碼器解碼介面擷取各伺服馬達轉角訊號,再傳送給主微控制器;並透過數位轉類比(DAC)介面對伺服馬達驅動器輸入類比電壓,獲得相對應的扭力(或速率)來驅動機器人平台。本論文先以電腦模擬瞭解非線性公稱與適應控制律之控制性能,其中行走軌跡的規劃則使用三階軟楔法。最後並使用所製作的主從架構控制器,進行全向輪機器人之開迴路速度控制和非線性公稱回授控制律的實現研究,驗證系統的實際性能。

Abstract

In this thesis, the three-axis low-level servo control hardware design and control implementation for an omni-directional wheeled robot are considered. The robot's controller is designed based on master/slave microcontroller architecture. The interface circuits for the three servo motors, and timer interrupt, external signal interrupt, UART and I2C interrupt are integrated to construct the controller. Using UART and I2C interfaces, motor-rotor feedback signals and torque/speed commands are transmitted/received between the ARM7 S3C44B0X master and the dsPIC30F4011 slave microcontrollers. The master microcontroller handles the capturing of the feedback signals, setting of the desired trajectory, and computation of the control algorithm, and then sends the control commands to the major slave microcontroller. The slave microcontrollers retrieve each servo motor's encoder signal by their quadrature encoder interfaces (QEI's), and then the major slave microcontroller receives the other two slave microcontrollers' encoder signals via the I2C bus. Through digital to analog converter (DAC) interfaces, the three slave microcontrollers send the torque/ speed commands to the servo motors to achieve the corresponding torques/speeds to drive the robot system.
In this study, the omni-directional wheeled robot's desired motion trajectories are planned by the cubic spline method, and the performances of the stable nonlinear nominal and adaptive control systems are first tested via computer simulations. Finally, open-loop velocity control and nominal nonlinear feedback control are implemented using the constructed master/slave architecture-based controller hardware.
URI: http://hdl.handle.net/11455/2477
其他識別: U0005-1908201015110300
Appears in Collections:機械工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.