Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/2479
標題: 高色散玻璃材質的模造特性對光學鏡頭設計的影響
Effect of molding characteristics of high dispersion glass material for optical lens design
作者: 林英瀚
Lin, In-Han
關鍵字: glass molding;玻璃模造;high dispersion coefficient;thermal expansion;fracture;高色散係數;熱膨脹;破裂
出版社: 機械工程學系所
引用: ﹝1﹞Yang Chen,et al.“Numerical simulation and experimental study of residual stresses in compression molding of precision glass optical components,”Journal of manufacturing science and engineering 130[5], 121-129(2008). ﹝2﹞Anurag Jain,et al.“Viscosity measurement by cylindrical compression for numerical modeling of precision lens molding process,”Journal of the American ceramic society 88 [3],2409 -2414(2005). ﹝3﹞Lijuan Su,et al.“Refraction index variation in compression molding of precision glass optical components,”Applied optics,1662-1667(2008). ﹝4﹞高正雄,“透鏡、稜鏡研磨工藝,”復漢出版社(2001)。 ﹝5﹞http://www.oharacorp.com/catalog.html ﹝6﹞A.K.Varshneya,”The viscosity of glass,”Fundamentals of Inorganic glasses,194-195(1994). ﹝7﹞連世暢,“潤濕角對模造玻璃成型機制之探討,”碩士論文,國立臺灣科技大學(2008)。 ﹝8﹞黃建溢,“光學玻璃球面透鏡熱壓成形研究,”碩士論文,國立交通大學(2003)。 ﹝9﹞王崴,“模造成型之光學鏡片直接加熱研究,”碩士論文,國立臺灣科技大學(2007)。 ﹝10﹞王嘉偉,“光學玻璃透鏡之熱壓成型研究,”碩士論文,國立交通大學(2005)。 ﹝11﹞Jiwang Yan,et al.“Modeling high-temperature glass molding process by coupling heat transfer and viscous deformation analysis,”Journal of Precision Engineering 33[2],150-159 (2008). ﹝12﹞Yu-chung Tsai, et al.“Glass material model for the forming stage of the glass molding process,”Journal of materials processing technology 201[1-3],751-754(2008). ﹝13﹞Jiwang Yan,et al.“Molding high-temperature glass molding process by coupling heat transfer and viscous deformation analysis,”Precision Engineering 33[2],150-159(2009). ﹝14﹞Anurag Jain, et al. “Numerical Molding of viscoelastic stress relaxation during glass lens forming process,” Journal of the American ceramic society 88[3],530-535(2005). ﹝15﹞高正雄,“透鏡設計理論應用,”復漢出版社(2001)。 ﹝16﹞訊技科技股份有限公司,“光學設計程式使用手冊,”(2003)。
摘要: 
本論文探討高色散係數玻璃材質S-FPL51利用玻璃模造技術成形時,對透鏡厚度的影響,並應用於光學鏡頭設計中,使優化後的光學系統可滿足規格且達到可製造的目的。
藉由光學鏡頭模擬後的透鏡外形,以玻璃模造技術成形高色散係數玻璃材質的透鏡,並同時探討該種類的材質在玻璃模造製程上的特性。由實驗結果可知該透鏡模造後在透鏡曲率及平面接合處會有破裂產生,為降低應力將模具在曲率與平面接合處倒角加大至0.5破裂無改善;模造持溫時間由原本的100秒延長至240秒,破裂隨著時間延長而縮小亦無法去除;冷卻速率由0.57℃/sec降至0.32℃/sec,破裂隨著冷卻速率的變慢變小卻仍無法去除。若以熱膨脹係數較小的玻璃材質試作相同的透鏡外形則無破裂發生,得知該玻璃材質係因熱膨脹係數較大而造成透鏡破裂,尤其是薄透鏡。所以將透鏡厚度增加至5.0㎜以上時,透鏡則無破裂的發生。由於此玻璃材質因膨脹係數較大,加上內外溫度差所產生的應力造成薄透鏡無法承受該應力而破裂,故須將厚度增加方可承受該應力而不破裂。最後將此厚度參數一併加入光學鏡頭模擬之參數優化而設計出製造性佳的光學鏡頭,但也因為該透鏡之加厚造成鏡頭總長度增加了2.6mm。

In this paper, we describe the effect of the high-dispersion coefficient glass material (S-FPL51) on the lens thickness and its application to the optical lens design, while using the molding technology to manufacture lenses. With the result, the optimized optical system can satisfy the required specifications and meet the fabrication demands.
The study also investigates the manufacturing process characteristics of this high-dispersion coefficient material via the simulated lens shape. The experiment shows that the manufactured lens results in fracture between the junction of the curvature and plane. To decrease the stress, the chamfer of the junction between curvature and plane was raised up to 0.5, but the fracture still existed. Considering the time of stable temperature, it was increased from 100 seconds to 240 seconds, but the fracture also could not be eliminated through varying time extension. The rate of cooling was changed from 0.57℃/sec. to 0.32℃/sec., but the fracture could not be eliminated by slower and smaller cooling rate as well. If using smaller heat-expansion coefficient glass material to shape the same lens, there would no fracture occurred. This result demonstrates that the larger heat-expansion coefficient glass will lead fracture, especially for thinner lenses. Accordingly, the lens shows no fracture when increasing the thickness up to 5.0 mm. Due to the larger expansion coefficient of the material and the stress produced by temperature difference existing between the inner and outer parts, the thinner lenses trend to present fracture. Consequently, increasing lens thickness could avoid the fracture occurred by uneven stress. In conclusion, considering the thickness parameter for optimal simulation to devise the manufacturable lens makes the lens thicker and the total length of the system increasing up to 2.6 mm.
URI: http://hdl.handle.net/11455/2479
其他識別: U0005-1908201020581700
Appears in Collections:機械工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.