Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/2481
標題: 小型複合加工系統之結構動態行為分析
Characterization of the Structural Dynamic Behaviors in Compact Compound Machine Tool
作者: 葉國志
Yeh, Kuo-Chih
關鍵字: Computer Aided Engineering;電腦輔助工程;Finite Element Method;Static Stiffness;Dynamic Stiffness;有限元素法;靜剛性;動剛性
出版社: 機械工程學系所
引用: [1] 陳國禎, “線性馬達氣壓配重,” 機械工業雜誌, 第241期, 156-161。 [2] 陳政雄, “高速進給系統之動態輪廓運動誤差分析,” 機械月刊, 2000年3月。 [3] 程建興, “振動測試對工具機品質之改善,” 機械工業雜誌, 第36期, 90-96。 [4] 黃俊洋, “模態分析在工具機設計及振動問題診斷的應用技術,” 機械工業雜誌, 第101期, 257-266。 [5] 許晉謀, “高速综合加工機之結構分析,” 機械工業雜誌, 第216期, 116-120。 [6] 周貽灣,王振而, “工具機振動量測、原因分析、故障診斷與健康監測,” 第六屆振動與噪音工程學術研討會, 116-120, 1998年5月。 [7] 陳昌銘, “工具機主軸動態分析,” 機械工業雜誌, 第28期, 24-30。 [8] 黃德言, “工具機結構有限元素分析-靜剛性分析,” 機械工業雜誌, 第168期, 267-279。 [9] 張清圳, “機床結構動態特性分析與優化設計,” 碩士論文, 中原大學機械工程研究所, 2004年。 [10] 李宗哲, “工具機異常診斷實例探討,” 機械工業雜誌, 第68期, 145-152。 [11] 謝其懋, “工具機之測試與分析,” 機械工業雜誌, 第101期, 245-256。 [12] 王文瑞, “微型工具機技術探討,” 機械工業雜誌, 第276期, 17-27。 [13] 周政賓, “微複合加工模組技術發展現況,” 工具機與零組件, 25-28, 2008年12月。 [14] 盧銘詮, “微細切削加工與微刀具狀態偵測發展,” 機械工業雜誌, 第300期, 73-88。 [15] 清水伸二, “複合加工機與複合加工技術未來發展,” 工具機與零組件, 16-21, 2008年12月。 [16] MAZAK, “複合加工機型錄,” 2009年。 [17] 張恩生, “線性馬達之技術發展與應用,” 機械工業雜誌, 第216期, 156-161。 [18] 上銀, “線性馬達技術手冊,” 2007年。 [19] MITSUBISHI, “線性馬達技術手冊,” 2007年。 [20] SMC, “氣壓缸技術手冊,” 2009年。 [21] 莊殷, “國產化高精度微放電加工機開發與應用,” 機械工業雜誌, 第297期, 31-38。 [22] 虎門科技股份公司, “台灣地區第一屆ADAMS論文集,” 1999。 [23] 上銀, “線性滑軌技術手冊,” 2007年。 [24] 蔡建安, “工具機之動態特性研究,” 碩士論文, 國立中興大學機械工程研究所, 2008年。 [25] 姜唐傑, “主動式氣壓配重系統於高速高具機之研究,” 碩士論文, 國立成功大學機械工程研究所, 2007年。 [26] P. K. Kulkarni and K. Srinvasan, “Cross-Coupled Compensators for Contouring Control of Multi-Axial Machine Tools,” NAMRC 13th, 1985. [27] P. K. Kulkarni and K. Srinvasan, “Cross-Coupled Control of Biaxial Feed Drive Servo-Mechanisms,” Journal of Dynamic Systems, Vol.112, 1990. [28] K. J. Bathe, “Finite Element Procedures,” Prentice-Hall, 1996. [29] B. William, “A first course in the Finite Element Method,” Mcgraw-Hill College, 1994. [30] S. Moaveni, “Finite Element Analysis︰Theory and Application with ANSYS,” Upper Saddle River, 2003. [31] S. Singiresu, “The Finite Element Method in Engineering,” Buttrworth- Heinemann, 1999. [32] D. J. Dawe, “Matrix and Finite Element Displacement Analysis of Structures,” Clarendon Pres, 1984. [33] O. C. Zienkiewicz, “The Finite Element Method︰the basis,” Vol.1, Fifth Edition. [34] H. Filiz, A. Akpolat and I. H. Guzelbey, “Deformation and Pressure Distribution on Machine Tool Slideways,” Tools Manufacture, 37: 309-318, 1997. [35] R. Mahdavinejad, “Finite Element Analysis of Machine and Workpiece Instability in Turning,” International Journal of Machine Tools and Manufacture, 45: 753-760, 2005. [36] M. Rahman, M. A. Mansur, L. K. Lee and J. K. Lum, “Development of a Polymer Impregnated Concrete Damping Carriage for Linear Guideways for Machine Tools,” International Journal of Machine Tools, 41: 431-441, 2001. [37] J. S. Agapiou, “Estimating the Static Stiffness for a Spindle-Toolholder-Tooling System,” Machining Science and Technology, 12: 77–99, 2008. [38] J.H. Wang and S.C. Wang, “Reducing errors in the identification of structural joint parameters using error functions,” Journal of Sound and Vibration, 273: 295–316, 2004. [39] A. C. Ugural, “Mechanical Design,” McGRAW-HILL, 2004. [40] B. T. Wang, “Structural Modal Testing with the Use of Various Forms of Actuators and Sensors,” Mechanical Systems and Signal Processing, Vol.12, No.5, pp. 627-639, 1998. [41] Vibrant Technology Inc, “ME’ ScopeVES Operating Manual,” 2001. [42] J. Tlusty, J. C. Ziegert and S. Ridgeway, “A Comparison of Stiffness Characteristics of Serial and Parallel Machine Tools,” Journal of Manufacturing Processes, Vol.2, No.1, 2000. [43] T. Y. Huang and J. J. Lee, “On Obtaining Machine Tool Stiffness by CAE Techniques,” International Journal of Machine Tools and Manufacture, 41: 1149-1163, 2001. [44] J. R. Baker and K. E. Rouch, “Use of Finite Element Structural Models in Analyzing Machine Tool Chatter,” Finite Element in Analysis and Design, 38: 1029-1046, 2002. [45] S. Weikert, S. Bossoni and K. Wegener, “Modeling and Evaluation Tool for Supporting Decisions on the Design of Reconfigurable Machine Tools,” Journal of Manufacturing Systems, 26: 167-177, 2007. [46] A. A. Cardi, H. A. Firpi, M. T. Bement and S. Y. Liang, “Workpiece Dynamic Analysis and Prediction during Chatter of Turning Process,” Mechanical Systems and Signal Processing, 22: 1481-1494, 2008. [47] D. Kono, T. Lorenzer, S. Weikert and K. Wegener, “Evaluation of Modelling Approaches for Machine Tool Design,” Precision Engineering, 34: 399-407, 2010.
摘要: 
近年來工具機發展著重在高精度、微型化、複合化上,為了達成工具機高效能化之革新,最有效的方法之一就是將工具機多功能化,例如將具備加工流程簡化的多軸向、高轉速、高速進給的中心加工機朝機能精微複合化發展;而要發展精微複合化加工,加工精度是最關鍵的指標,也是一台精微複合化工具機最核心的價值所在。
振動為影響加工精度最重要的部分,因為振動會大幅降低加工精度,甚至於在加工時會發生顫振現象影響工件品質,並且會減少刀具使用壽命,造成加工上的困難度。因此,為了降低機台因振動所造成的破壞現象,必須了解其結構動態特性,本研究以有限元素電腦輔助工程軟體及實驗量測作一系列的探討。首先建立進給系統之理論動態模型,並進行頻率響應分析了解其運動特性;再透過有限元素分析軟體建立整機模型並以不同實體元素予以網格化,可得到此小型複合加工系統模態及自然振動頻率,並輔以實驗量測可得到共振模態頻率,將實驗量測結果與有限元素分析比較後,發現有相當高的吻合度;並探討複合加工系統靜剛性與動剛性,以了解機台靜態下抵抗變形的能力與動態力下因阻尼值的不同所造成的顫振現象。在高速化、高精度的訴求下,透過此方法將可以較清楚的了解工具機結構的動態特性,並可利用此結果來提升加工精度、高剛性、高穩定性及工具機的壽命,以達到絕佳工具機技術之水準。

High precision, microminiaturization and compound features have become major stream in the development of machine tools in recent years. In order to effectively promote the performance of machine tool, machine tool with multi-function is one of the most effective methods. For example, redesigning or modifying multi-axial, high speed spindle and high speed feeding machining center becomes a micro-precision compound machine tool. In developing micro-precision compound machine tool, precision is not only the key index but also is the core value of the machine.
Vibration is the main factor in determination of precision of machine tool, because it will cause chatter, reduce the tool life, and increase the difficulty of processing. Therefore, understanding the structural dynamic behaviors can reduce the damage caused by vibration. This research is done by using finite element computer aided engineering software and experiment. First, we established the theoretical dynamic model of feeding system, and then analyzed the frequency response to understand the dynamic behaviors. Next, we analyzed the modal shape and nature frequency of the machine tool by the finite element software. An experiment of measuring the nature frequency also has been done to verify the computer simulation result. Study shows the result of finite element analysis agrees with the experimental result. Discussions of the static stiffness and dynamic stiffness have been done to understand the ability of deformation resistance, and the relationship between damping value and chatter. This method can help us to better understanding the dynamic characteristic of machine tools, and to improve the precision, rigidity, stability and life of machine tools.
URI: http://hdl.handle.net/11455/2481
其他識別: U0005-1908201021501200
Appears in Collections:機械工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.