Please use this identifier to cite or link to this item:
http://hdl.handle.net/11455/24858
標題: | Endothelin 3 對雞隻胚胎黑色素母細胞分佈之影響 Effect of Endothelin 3 on the distribution of melanoblasts in chicken embryos |
作者: | 陳郁元 Chen, Yu-Yuan |
關鍵字: | hyperpigmentation;色素過度沉澱;Silky;melanoblast;絲羽烏骨雞;黑色素母細胞 | 出版社: | 動物科學系所 | 引用: | 李時珍。1578。本草綱目(六)。卷四十八。禽部。73-74頁。商務書局。香港。 林欣穎。2009。螢光蛋白與RCAS 載體在細胞世系分析之應用。碩士論文。國立中興大學。台中。 陳志峰譯。2006。雞隻外貌的遺傳多樣性。國立編譯館與藝軒圖書出版社。台北。 鄭佩儀。2008。絲羽烏骨雞外貌特徵之遺傳研究。碩士論文。國立中興大學。台中。 Bates, P., J. A. Young, and H. E. Varmus. 1993. A receptor for subgroup A Rous sarcoma virus is related to the low density lipoprotein receptor. Cell74:1043-51. Baynash, A. G., K. Hosoda, A. Giaid, J. A. Richardson, N. Emoto, R. E.Hammer, and M. Yanagisawa. 1994. Interaction of endothelin-3 with endothelin-B receptor is essential for development of epidermal melanocytes and enteric neurons.Cell79:1277-1285. Beauvais-Jouneau, A., P. Pla, F. Bernex, S. Dufour, J. Salamero, R. Fassler, J. J. Panthier, J. P. Thiery, and L. Larue. 1999. A novel model to study the dorsolateral migration of melanoblasts. Mech. Dev. 89:3-14. Boerkoel, C. F. 1993. A new defective retroviral vector system based on theBryan strain of Rous sarcoma virus. Virology195:669-679. Bondurand, N., V. Pingault, D. E. Goerich, N. Lemort, E. Sock, C. L. Caignec, M. Wegner, and M. Goossens. 2000. Interaction among SOX10, PAX3 and MITF, three genes altered in Waardenburg syndrome. Hum. Mol. Genet. 9:1907-1917. Curran, K., D. W. Raible, and J. A. Lister. 2009. Foxd3 controls melanophore specification in the zebrafish neural crest by regulation of Mitf. Dev. Biol. 332:408-17. Dottori, M., M. K. Gross, P. Labosky, and M. Goulding. 2001. The winged-helix transcription factor Foxd3 suppresses interneurondifferentiation and promotes neural crest cell fate. Development128:4127–4138. Dorshorst, B., A. Molin, A. Johansson, L. Strömstedt, M. Pham, C. F. Chen, F. Hallböök, C. Ashwell, and L. Andersson. 2011. A Complex genomic rearrangement resulting in the duplication and increased expression of endothelin 3 causes dermal hyperpigmentation in the chicken. PLoS Genet. 7:e1002412. Dorshorst, B., R. Okimoto, and C. Ashwell. 2010. Genomic regions associated with dermal hyperpigmentation, polydactyly and other morphological traits in the Silkie chicken. J. Hered. 101:339-350 Dupin, E. and N. M. Le Douarin. 1995. Retinoic acid promotes the differentiation of adrenergic cells and melanocytes in quail neural crest cultures. Dev. Biol. 168:529-548. Erickson, C. A., and T. L. Goins. 1995. Avian neural crest cells can migrate in the dorsolateral path only if they are specified as melanocytes. Development 121:915-924. Erickson, C. A., T. D. Duong, and K. W. Tosney. 1992. Descriptive and experimental analysis of the dispersion of neural crest cells along the dorsolateral path and their entry into ectoderm in the chick embryo. Dev. Biol. 151:251–272. Faraco, C. D., S. A.Vaz, M. V. Pástor, and C. A. Erickson. 2001. Hyperpigmentation in the Silkie fowl correlates with abnormal migration of fate-restricted melanoblasts and loss of environmental barrier molecules. Dev. Dyn. 220:212-225. Federspiel, M. J. 1994. A system for tissue-specific gene targeting: transgenicmice susceptible to subgroup A avian leukosis virus-based retroviral vectors.Proc. Natl. Acad. Sci. U.S.A. 91:11241-11245. Freitas, P. F. D., F. D. F. Ferreira, and C. D. Fraco. 2003. PNA-positive glycoconjugates are negatively correlated with the access of neural crest cells to the gut in chicken embryos. Ana. Rec. 273:705-713. Gariepy, C. E., S. C. Williams, J. A. Richardson, R. E. Hammer, and M. Yanagisawa. 1998. Transgenic expression of the endothelin-B receptor prevents congenital intestinal aganglionosis in a rat model of Hirschsprung disease. J. Clin. Invest. 102:1092-1101. Hanna, L. A., R. K. Foreman, I. A. Tarasenko, D. S. Kessler, and P. A. Labosky. 2002. Requirement for Foxd3 in maintaining pluripotent cells of the early mouse embryo. Genes Dev. 16:2650–2661. Harris, M. L., H. Ronelle, and C. A. Erickson. 2008. Directing pathfinding along the dorsolateral path – the role of EDNRB2 and EphB2 in overcoming inhibition. Development 135:4113-4122 Hosoda, K., R. E. Hammer, J. A. Richardson, A. G. Baynash, J. C. Cheung, A. Giaid, and M. Yanagisawa. 1994. Targeted and natural (piebald-lethal) mutations of endothelin-B receptor gene produce megacolon associated with spotted coat color in mice.Cell 79:1267-76. Huang, S. Y., J. H. Lin, Y. H. Chen, C. K. Chuang, E.-C. Lin, M. C. Huang, H. F. S.Sun, and W. C. Lee. 2005. A reference map and identification of porcine testisproteins using 2-DE and MS. Proteomics 5:4205-4212. Hutt B. 1949. Genetics of the fowl. McGraw-Hill, New York. Ignatius, M. S., H. E. Moose, H. M. El-Hodiri, and P. D.Henion. 2008. Repression of foxd3 expression is requiredto permit mitfa-dependent melanogenesis. Dev. Biol. 313:568–583. Kos, R., M. V. Reedy, R. L. Johnson, and C. A. Erickson. 2001. The winged-helix transcription factor FoxD3 is important for establishing the neural crest lineage and repressing melanogenesis in avian embryos. Development 128:1467–1479. Lahav, R., E. Dupin, L. Lecoin, C. Glavieux, D. Champeval, C. Ziller, and N. M. Le Douarin. 1998. Endothelin 3 selectively promotes survival and proliferation of neural crest-derived glial and melanocytic precursors in vitro. Proc. Natl. Acad. Sci. U.S.A.95:14214-14219. Lahav, R., C. Ziller, E. Dupin, and N. M. Le Douarin. 1996.Endothelin 3 promotes neural crest cell proliferation and mediates a vast increase in melanocyte number in culture. Proc. Natl. Acad. Sci. U.S.A. 93:3892-3897. Landy, A. 1989. Dynamic, Structural, and Regulatory Aspects of Lambda Site-specific Recombination. Ann. Rev. Biochem. 58:913-949. Lecoin, L., T. Sakurai, M. T. Ngo, Y. Abe, M. Yanagisawa, and N. M. Le Douarin. 1998. Cloning and characterization of a novel endothelin receptor subtype in the avian class.Proc. Natl. Acad. Sci. U.S.A.95:3024-3029. Le Douarin, N. M. and Kalcheim, C. 1999. The Neural Crest (Second Edition) (Cambridge Univ. Press, New York). Melissa, L. H., and C. A. Erickson. 2007. Lineage specification in neural crest cell pathfinding. Dev. Dyn. 236:1-19. Moase, C. E., and D.G. Trasler. 1992. Splotch locus mouse mutants: models for neural tube defects and Waardenburg syndrome type I in humans. J. Med. Genet. 29:145-151. Muroya, S., R. Tanabe, I. Nakajima, and K. Chikuni. 2000. Molecular characteristics and site specific distribution of the pigment of the silky fowl. J. Vet. Med. Sci. 62:391-395. Nataf, V., A. Amemiya, M. Yanagisawa, and N. M. Le Douarin. 1998. The expression pattern of endothelin 3 in the avian embryo. Mech. Dev. 73:217-220. Nataf, V., L. Lecoin, A. Eichmann, and N. M. Le Douarin. 1996. Endothelin-B receptor is expressed by neural crest cells in the avian embryo.Proc. Natl. Acad. Sci. U.S.A. 93:9645-9650. Pavan, W. J. and S. M. Tilghman. 1994. Piebald lethal (sl) acts early to disrupt the development of neural crest-derived melanocytes. Proc. Natl. Acad. Sci. U S A. 91:7159-7163. Pla, P., C. Alberti, O. Solov’eva, M. Pasdar, T. Kunisada, and L. Larue. 2005. Ednrb2 orients cell migration towards the dorsolateral neural crest pathway and promotes melanocyte differentiation. Pigment. Cell Res. 18:181-187. Planque, N., G. Raposo, L. Leconte, O. Anezo, P. Martin, and S. Saule. 2004. Microphthalmia transcription factor induces both retinal pigmented epithelium and neural crest melanocytes from neuroretina cells. J. Biol. Chem. 279:41911-41917. Reid, K., A. M. Turnley, G. D. Maxwell, Y. Kurihara, H. Kurihara, P. F. Bartlett, and M. Murphy. 1996. Multiple roles for endothelin in melanocytedevelopment:regulation of progenitor number and stimulation of differentiation. Development122:3911-3919. Reedy, M. V., C. D. Faraco, and C. A. Erickson. 1998a. Specification and migration of melanoblasts at the vagal level and in hyperpigmented Silkie chickens. Dev. Dyn. 213:476-485. Reedy, M. V., C. D. Faraco, and C. A. Erickson. 1998b. The delayed entry of thoracic neural crest cells into the dorsolateral path is a consequence of the late emigration of melanogenic neural crest cells from the neural tube. Dev. Biol. 200:234-246. Sakurai, T., M. Yanagisawa, and T. Masaki. 1992. Molecular characterization of endothelin receptors.Trends Pharmacol. Sci.13:103-108. Steingrimsson, E., N.G. Copeland, and N. A. Jenkins. 2004. Melanocytes and the microphthalmia transcription factor network. Annu. Rev. Genet. 38: 365-411. Tachibana, M., Y. Kobayashi, and Y. Matsushima. 2003. Mousemodels for four types of Waardenburg syndrome. Pigment. CellRes. 16:448-454. Tachibana, M., K. Takeda, Y. Nobukuni, K. Urabe, J. E. Long, K. A. Meyers, S. A. Aaronson, and T. Miki. 1996. Ectopic expression of MITF, a gene for Waardenburg syndrome type 2, converts fibroblasts to cells with melanocyte characteristics. Nat. Genet. 14:50-54. Takeda, K., K. Yasumoto, R. Takada, S. Takada, K. Watanabe, T. Udono, H. Saito, K. Takahashi, and S. Shibahara. 2000. Induction of melanocyte-specific microphthalmia-associated transcription factor by Wnt-3a. J. Biol. Chem. 275:14013-14016. Thomas, A. J., and C. A. Erickson. 2009. FOXD3 regulates the lineage switch between neural crestderived glial cells and pigment cells by repressing MITF through a non-canonical mechanism. Development 136:1849-1858. Thomas, A. J., and C. A. Erickson. 2008. The making of a melanocyte: the specification of melanoblasts from the neural crest. Pigment. Cell Melanoma Res. 21:598-610. Yanagisawa, M., H. Kurihara, S. Kimura, Y. Tomobe, M. Kobayashi, Y. Mitsui, Y. Yazaki, K. Goto, and T. Masaki. 1988. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 332:411-415. Yoshida, H., T. Kunisada, M. Kusakabe, S. Nishikawa, and S. I. Nishikawa. 1996. Distinct stages of melanocyte differentiation revealed by anlaysis of nonuniform pigmentation patterns.Development 122:1207-1214. | 摘要: | 色素過度沈澱(hyperpigmentation)為絲羽烏骨雞(Silky)外貌重要特徵之一,原因是由於成年烏骨雞之腸繫膜、腹膜等結締組織有大量黑色素細胞(melanocytes)存在。黑色素細胞源自於具分化多能性(pluripotent)之神經嵴細胞(neural crest cells),於雞胚胎發育第15-16期,神經嵴細胞會沿著神經管(neural tube)與骨節(sclerotome)之間空隙的腹側路徑(ventral pathway)遷徙到達腹側體節,並分化為神經元與神經膠原細胞(neurons and glial cells);於第21-22期時,神經嵴細胞先分化成黑色素母細胞(melanoblasts)後,再沿著皮肌節(dermamyotome)與外胚層(ectoderm)之間的背側路徑(dorsolateral pathway)遷徙,隨後侵入表皮再分化成黑色素細胞。而烏骨雞胚胎於發育過程中,黑色素母細胞的遷移會同時進入背側與腹側路徑,故導致其色素過度沈澱。由於研究指出黑色素母細胞的遷徙與增殖,可受到Endothelin 3(EDN3)調控,因此,本論文之研究目的為探討於神經嵴細胞遷徙時期,EDN3與Endothelin receptors B2(EDNRB2)於烏骨雞以及L2品系土雞之表現與分佈狀況,並瞭解EDN3於色素過度沉澱現象所扮演之角色。結果顯示,烏骨雞胚胎EDN3之表現,於神經嵴細胞遷徙時期均顯著高於同一時期L2品系土雞胚胎之表現量,且烏骨雞胚胎之EDNRB2於開始進行背側遷徙之第22期與第28期亦均高於L2胚胎之表現。EDN3於L2胚胎表現位置幾乎都集中於背側路徑;反之,於烏骨雞胚胎中,EDN3表現位置遍佈於背側路徑與腹側路徑周邊之組織。將小鼠EDN3-RCAS反轉錄病毒注射入L2品系土雞胚胎體節內,可讓小鼠EDN3於雞胚中表現,且黑色素母細胞可侵入受感染之雞胚體節內部,但孵化至第14天時,並未出現類似烏骨雞色素過度沉澱之現象。利用蛋白質體學之分析方法,比對絲羽烏骨雞與L2品系胚胎發育到第22期以及第28期胚胎所表現之蛋白質。結果顯示在兩品種間表現量具顯著差異之蛋白質於第22期胚胎有30個,而第28期有59個蛋白質,其中於第22期可鑑定出身分之蛋白質有12個,而第28期則有24個。於烏骨雞胚胎內表現量高的蛋白質功能包括了氧化還原反應、細胞增殖、細胞老化、粒線體內蛋白質輸送以及大分子胜肽聚合等。本研究確認EDN3為造成絲羽烏骨雞之黑色素母細胞出現腹側遷移之關鍵因子,但後續分化成黑色素細胞以及維持黑色素細胞生長,可能還需要其他因素輔助以形成色素過度沉澱,而在神經嵴細胞遷徙時期,於絲羽烏骨雞與L2胚胎內表現具顯著差異之蛋白質則可提供進一步研究之方向。 Hyperpigmentation is one of the obvious characteristics in Silky fowl. It is caused by large numbers of melanocytes existing in connective tissues, such as the mesenteries and the peritoneumin adult Silky. Melanocytes are derived from a group of pluripotent cells called the neural crest cells (NCCs). In chicken embryos at the stages 15-16, the NCCs migrate along the ventral pathway between the neural tube and sclerotome and enter the ventral somties, and then differentiate into neurons and glial cells. At the stages 21-22, the NCCs, commencing to differentiate into the melanoblasts, migrate along the dorsolateral pathway between dermamyotome and ectoderm, and then invade into epidermis and differentiate into the melanocytes. Whereas in Silky, the melanoblasts migrate not only along the dorsolateral pathway but also theventral pathway at the stages 21-22, which could result in hyperpigmentation.It has been reported that Endothelin 3 (EDN3) could regulate the migration and survival of melanoblasts expressingEDN3receptor,Endothelin receptors type B2 (EDNRB2). Therefore, the objectives of this research were to investigate the expression profiles of EDN3 and EDNRB2 at the NCC-migration waves in Silky and L2 chicken embryos, and to examine the role of EDN3 in the phenomenon of hyperpigmentation. The RT-PCR resultsdemonstrated that the expression of EDN3 was significantly higher in the Silky embryos at the three stages examined. In addition, the Silky embryos at the stages 22 and 28 expressed significantly higher EDNRB2 than L2 embryos did. EDN3 was expressed at the dorsolateral pathway in L2 embryos at the stage 28, while in Silky,EDN3 was expressed around the somites located in both dorsolateral and ventral pathways. The mouse EDN3-RCAS retroviruswas constructed and injected into the somites of L2 embryo.Expression of mouse EDN3 was detected in the injected L2 embryos and it was found that the melanoblasts had migrated into the somites of infected L2 embryos. However, no hyperpigmentation was observed after incubation of the infected embryos to day 14. The differentially expressed proteins between Silky and L2 embryos at the stages 22 and 28 were analyzed by proteomic approach. The results showed that 30 and 59 protein spots were significantly different between Silky and L2 embryos at the stages 22 and 28, respectively, and from which, 12 and 24 proteins wereidentified individually.Functions of the identified proteins in Silky include redox regulations, cell proliferation, cellular ageing, mitochondrial protein import and macromolecular assembly. In conclusions, EDN3 plays a crucial role in directing the ventral pathway of the melanoblasts in Silky embryo. However, except for EDN3, other factors might also be required to support the differentiation of melanoblasts and maintenance of survival and proliferation of melanocytes. Additionally, the identified proteins significantly differentially expressed between Silky and L2 embryos at NCCs migration stages might participate the phenomena of hyperpigmentation, which is worth further studying. |
URI: | http://hdl.handle.net/11455/24858 | 其他識別: | U0005-0102201210391200 |
Appears in Collections: | 動物科學系 |
Show full item record
TAIR Related Article
Google ScholarTM
Check
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.