Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/24861
標題: 以蛋白質體學探討影響複製動物胚再程式化之因子
Analysis of factors influencing reprogramming in cloned mammalian embryos by proteomic method
作者: 葉承恩
Yeh, Cheng-En
關鍵字: 2D電泳;two-dimensional polyacrylamide gel electrophoresis;爪蟾;細胞週期;xenopus;cell cycle
出版社: 動物科學系所
引用: Ahmad, K., and S. Henikoff. 2002a. The histone variant H3.3 marks active chromatin by replication-independent nucleosome assembly. zMol. Cell 9:1191-1200. Ahmad, K. and S. Henikoff. 2002b. Epigenetic consequences of nucleosome dynamics. Cell 111:281-284. Alberio, R., A. D. Johnson, R. Stick, and K. H. Campbell. 2005. Differential nuclear remodeling of mammalian somatic cells by Xenopus laevis oocyte and egg cytoplasm. Exp. Cell 307:131-41. Baguisi, A., E. Behboodi, D. T. Melican, J. S. Pollock, M. M. Destrempes, C. Cammuso, J. L. Williams, S. D. Nims, C. A. Porter, P. Midura, M. J. Palacios, S. L. Ayres, R. S. Denniston, M. L. Hayes, C. A. Ziomek, H. A. Meade, R. A. Godke, W. G. Gavin, E. W. Overstrom, and Y. Echelard. 1999. Production of goats by somatic cell nuclear transfer. Nat. Biotechnol. 17:456-461. Berger, S. L. 2002. Histone modifications in transcriptional regulation. Curr. Opin. Genet. Dev. 12:142-148. Bergeron, J. J., M. B. Brenner, D. Y. Thomas, and D. B. Williams. 1994. Calnexin: a membrane-bound chaperone of the endoplasmic reticulum. Trends Biochem. Sci. 19:124-128. Bestor, T. H. 2000. The DNA methyltransferases of mammals. Human Molecular Genetics 9:2395-2402. Bhattacharya, S. K., S. Ramchandani, N. Cervoni, and M, Szyf. 1999. A mammalian protein with specific demethylase activity for mCpG DNA. Nature 397:579-583. Bird, A. 2002. DNA methylation patterns and epigenetic memory. Genes and Development 16:6-21. Blander, G., and L. Guarente. 2004. The Sir2 family of protein deacetylases. Annu. Rev. Biochem. 73:417-35. Bravo, R., and H. McDonald-Bravo. 1987. Existence of two populations of cyclin proliferating cell nuclear antigen during the cell-cycle-association with DNA-replication sites. J. Cell Biol. 105:1549-1554. Brem, G., and B. Kuhholzer. 2002. The recent history of somatic cloning in mammals. Cloning Stem Cells 4:57-63. Breslow, J. L., D. Ross, J. McPherson, H. Williams, D. Kurnit, A. L. Nussbaum, S. K. Karathanasis, and V. I. Zannis. 1982. Isolation and characterization of cDNA clones for human apolipoprotein A-I. Proc. Natl. Acad. Sci. USA. 79:6861-6865. Brewer, H. B., T. Jr. Fairwell, A. LaRue, R. Ronan, A. Houser, and J. Bronzert. 1978. The amino acid sequence of human apoA-I, an apolipoprotein isolated from high density lipoproteins. Biochem. Biophys. Res. Commun. 80:623-630. Briggs, S. D., M. Bryk, B. D. Strahl, W. L. Cheung, J. K. Davie, S. Y. Dent, F. Winston, and C. D. Allis. 2001. Histone H3 lysine 4 methylation is mediated by Set1 and required for cell growth and rDNA silencing in Saccharomyces cerevisiae. Genes Dev. 15:3286-3295. Brigges, R., E. U. Green, and T. J. King. 1951. An investigation of the capacity for cleavage and differentiation in Rana pipiens eggs lacking "functional" chromosomes. J. Exp. Zool. 116:455-499. Burns, K., B. Duggan, E. A. Atkinson, K. S. Famulski, M. Nemer, R. C. Bleackley, and M. Michalak. 1994. Modulation of gene expression by caleticulin binding to the glucocorticoid receptor. Nature 367:476-480. Byrne, J. A., S. Simonsson, P. S. Western, and J. B. Gurdon. 2003. Nuclei of adult mammalian somatic cells are directly reprogrammed to oct-4 stem cell gene expression by amphibian oocytes, Curr. Biol. 13:1206-1213. Cheong, H. T. and Kanagawa, H. 1993. Assessment of cytoplasmic effects on the development of mouse embryonic nuclei transferred to enucleated zygotes. Theriogenology 39:451-461. Chesne P, Adenot PG, Viglietta C, Baratte M, Boulanger L & Renard JP 2002 Cloned rabbits produced by nuclear transfer from adult somatic cells. Nature Biotechnol. 20:366-369. Cheung, P., C. D. Allis, and P. Sassone-Corsi. 2000a. Signaling to chromatin through histone modifications. Cell 103:263-271. Cheung, P., and L. Chan. 1983. Nucleotide sequence of cloned cDNA of human apolipoprotein A-I. Nucleic Acids Res. 11:3703-3715. Chinenov, Y. 2002. A second catalytic domain in the Elp3 histone acetyltransferases: a candidate for histone demethylase activity? Trends Biochem. Sci. 27:115-117. Cibelli, J. B., S. L. Stice, P. J. Golueke, J. J. Kane , J. Jerry, C. Blackwell, F. A. P. de León, and J. M. Robl. 1998. Cloned transgenic calves produced from nonquiescent fetal fibroblasts. Science 280:1256-1258. Clements, A., A. N. Poux, and W. S. Lo. 2003. Structural basis for histone and phosphohistone binding by the GCN5 histone acetyltransferase. Mol. Cell. 12:461-73. Coppolino, M. G., M. J. Woodside, N. Demaurex, S. Grinstein, R. St-Arnaud, and S. Dedhar. 1997. Calreticulin is essential for integrin-mediated calcium signaling and cell adhesion. Nature 386:843-847. Corbett, E. F., and Michalak, M. (2000). Calcium, a signaling molecule in the endoplasmic reticulum? Trends Biochem. Sci. 25:307-311. Cowan, C. A., J. Atienza, D. A. Melton, and K. Eggan. 2005. Nuclear reprogramming of somatic cells after fusion with human embryonic stem cells Science 309:1369-1373. Daujat, S., U. M. Bauer, V. Shah, B. Turner, S. Berger, and T. Kouzarides. 2002. Crosstalk between CARM1 Methylation and CBP Acetylation on Histone H3. Curr. Biol. 12:2090-2097. Dean, W., F. Santos, and W. Reik. 2003. Epigenetic reprogramming in early mammalian development and following somatic nuclear transfer. Seminars in Cell and Developmental Biol. 14:93-100. Dean, W, F. Santos, M. Stojkovic, V. Zakhartchenko, J. Walter, E. Wolf, and W. Reik. 2001. Conservation of methylation reprogramming in mammalian development: aberrant reprogramming in cloned embryos. PNAS. 98:13734-13738. Dedhar, S., P. S. Rennie, M. Shago, C. L. Hagesteijn, H. Yang, J. Filmus, R. G. Hawley, N. Bruchovsky, H. Cheng, R. J. Matusik, and V. Giguère. 1994. Inhibition of nuclear hormone receptor activity by calreticulin. Nature 367:480-483. Ding, J., R. M. Moor., and G. R. Foxcroft. 1992. Effects of protein synthesis on maturation, sperm penetration, and pronuclear development in porcine oocytes. Mol Reprod Dev 33:59-66. Durrin, L. K., R. K. Mann, and P. S. Kayne. 1991. Yeast histone H4 N-terminal sequence is required for promoter activation in vivo. Cell 65:1023-31. Fawcett, D. W. 1966. On the occurrence of a fibrous lamina on the inner aspect of the nuclear envelope in certain cells of vertebrates, Am. J. Anat. 119:129-145. Egli, D., J. Rosains, G. Birkhoff, and K. Eggan. 2007. Developmental reprogramming after chromosome transfer into mitotic mouse zygotes. Nature 447:679-685. Evans, M., and M. Kaufman. 1981. Establishment in culture of pluripotent cells from mouse embryos. Nature 292:154-156. Falnes, P. O., R. F. Johansen, and E. Seeberg. 2002. AlkB-mediated oxidative demethylation reverses DNA damage in Escherichia coli. Nature 419:178-182. Feinberg, A. P. and B. Tycko. 2004. The history of cancer epigenetics. Nat. Rev. Cancer. 4:143-153. Feng, Q., H. Wang, H. H. Ng, H. Erdjument-Bromage, , Tempst, P., Struhl, K. and Zhang, Y. 2002. Methylation of H3-lysine 79 is mediated by a new family of HMTases without a SET domain. Curr. Biol. 12:1052-1058. Ferguson-Smith, A. C. and M. A. Surani. 2001. Imprinting and the epigenetic asymmetry between parental genomes. Science 10:1086-1089. Fitch, W. M. 1977. Phylogenies constrained by the crossover process as illustrated by human hemoglobins and a thirteen-cycle, eleven-amino-acid repeat in human apolipoprotein A-I. Genetics 86:623-644. Fliegel, L., K. Burns, D. H. MacLennan, R. A. Reithmeier, and M. Michalak. 1989. Molecular cloning of the high affinity calcium-binding protein (calreticulin) of skeletal muscle sarcoplasmic reticulum. J. Biol. Chem. 264:21522-21528. Fukuda, H., N. Sano, S. Muto, and M. Horikoshi. 2006. Simple histone acetylation plays a complex role in the regulation of gene expression. Brief. Funct. Genomic Proteomic 5:190-208. Fulka, J. Jr., N. L. First, and R. M. Moor. 1991. Nuclear transplantation in mammals: remodeling of transplanted nuclei under the influence of maturation promoting factor. Bioessays 18:835-840. Galli. C., I. Lagutina, G. Crotti, S. Colleoni, P. Turini, N. Ponderato, R. Duchi, and G. Lazzari. 2003. A cloned horse born to its dam twin. Nature 424:635. Gao, L, M. A.Cueto, and F. Asselbergs. 2002. Cloning and functional characterization of HDAC11, a novel member of the human histone deacetylase family. J. Biol. Chem. 277:25748-55. Gillespie, P. J. and J. J. Blow. 2000. Nucleoplasmin-mediated chromatin remodeling is required for Xenopus sperm nuclei to become licensed for DNA replication. Nucleic Acids Res. 28:472-480. Gittens, J. E. I., K. J. Barr, B. C. Vanderhyden, and G. M. Kidder. 2005. Interplaybetween paracrine signaling and gap junctional communication in ovarian follicle. J. Cell Sci. 118:113-122. Glozak, M. A., N. Sengupta, and X. Zhang. 2005. Acetylation and deacetylation of non-histone proteins. Gene. 363:15-23. Goicoechea, S., A. W. Orr, M. A. Pallero, P. Eggleton, and J. E. Murphy-Ullrich. 2000. Thrombospondin mediates focal adhesion disassembly through interactions with cell surface calreticulin. J. Biol. Chem. 275:36358-36368. Goodell, M. A. 2003. Stem-cell ‘plasticity': befuddled by the muddle. Curr. Opin. Hematol. 10:208-213. Gregoretti I.V., Y. M. Lee, and H. V. Goodson. 2004. Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis. J. Mol. Biol. 338:17-31. Gruenbaum, Y., R. D. Goldman, R. Meyuhas, E. Mills, A. Margalit, A. Fridkin, Y. Dayani, M. Prokocimer, and A. Enosh. 2003. The nuclear lamina and its functions in the nucleus, Int. Rev. Cytol. 226:1-62. Gu, W., and R. G. Roeder. 1997. Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell 90:595-606. Gudz, T. I., T. E. Schneider, T. A. Haas, and W. B. Macklin. 2002. Myelin proteolipid protein forms a complex with integrins and may participate in integrin receptor signaling in oligodendrocytes. J. Neurosci. 22:7398-7407. Gurdon. J. B. 1962. Adult frogs derived from the nuclei of single somatic cells. Dev. Biol. 4:256-273. Gurdon, J. B., and R. A. Laskey. 1970. The transplantation of nuclei from single cultured cells into enucleate frogs'' eggs. J. Embryol. Exp. Morphol. 24:227-248. Hansis, C., G.. Barreto, N. Maltry, and C. Niehrs. 2004. Nuclear reprogramming of human somatic cells by Xenopus egg extract requires BRG1, Curr. Biol. 14:1475-1480. Hartwell, L. H., R. T. Hunt and P. M. Nurse. 2001. Key regulators of the cell cycle. The Nobel Prize in Physiology or Medicine 2001. Helenius, A., E. S. Trombetta, D. N. Hebert, and J. F. Simons. 1997. Calnexin, calreticulin and the folding of glycoproteins. Trends Cell Biol. 7:193-200. Hermann, M., K. A. Lindstedt, R. Foisner, S. Morwald, M. G. Mahon, R. Wandl, W. J. Schneider, and J. Nimpf. 1998. Apolipoprotein A-I production by chicken granulosa cells. FASEB. J. 12:897-903. Hutchison, C. J. 2002. Lamins: building blocks or regulators of gene expression? Nat. Rev., Mol. Cell Biol. 3:848-858. Hutchison, C. J., R. Cox, and C. C. Ford. 1988. The control of DNA replication in a cell-free extract that recapitulates a basic cell cycle in vitro. Development 103:553-566. Jenuwein, T. and C. D. Allis, C. D. 2001. Translating the histone code. Science 293:1074-1080. Kato, Y., T. Tani, Y. Sotomaru, K. Kurokawa, J. Kato, H. Doguchi, H. Yasue, and Y. Tsunoda. 1998. Eight calves cloned from somatic cells of a single adult. Science 282:2095-2098. Karathanasis, S. K., V. I. Zannis, and J. L. Breslow. 1983. Isolation and characterization of the human apolipoprotein A-I gene. Proc. Natl. Acad. Sci. USA. 80:6147-6151. Kayne, P. S., U. J. Kim, and M. Han. 1988. Extremely conserved histone H4 N terminus is dispensable for growth but essential for repressing the silent mating loci in yeast. Cell 55:27-39. Kelliher, M. A., S. Grimm, Y. Ishida, F. Kuo, B. Z. Stanger, and P. Leder. 1998. The death domain kinase RIP mediates the TNF-induced NF-kappaB signal. Immunity 8:297-303. Klimasauskas, S., S. Kumar, R. J. Roberts, and X. Cheng. 1994. HhaI methyl-transferase flips its target base out of the DNA helix. Cell 76:357-369. Kono, T., O. Y. Kwon, and T. Nakahara. 1991a. Development of enucleated mouse oocytes reconstituted with embryonic nuclei. J. of Reproduction and Fertility 93:165-172. Kouzarides, T. 2002. Histone methylation in transcriptional control. Curr. Opin. Genet. Dev. 12:198-209. Krause, K. H., and M. Michalak. 1997. Calreticulin. Cell 88:439-443. Kurki, P., K. Ogata, and E. M. Tan. 1988. Monoclonal-antibodies to proliferating cell nuclear antigen (PCNA) cyclin as probes for proliferating cells by immunofluorescence microscopy and flow-cytometry. J. Immunol Methods. 109:49-59. Kwon, M. S., C. S. Park, K. Choi, J. Ahnn, J. I. Kim, S. H. Eom, S. J. Kaufman, and W. K. Song. 2000. Calreticulin couples calcium release and calcium influx in integrin-mediated calcium signaling. Mol. Biol. Cell 11:1433-1443. Lacoste, N., R. T. Utley, J. M. Hunter, G.. G.. Poirier, and J. Cote. 2002. Disruptor of telomeric silencing-1 is a chromatin-specific histone H3 methyltransferase. J. Biol. Chem. 277:30421-30424. Lai, L., K. W. Park, H. T. Cheong, B. Kuhholzer, M. Samuel, A. Bonk, G. S. Im, A. Rieke, B. N. Day, C. N. Murphy, D. B. Carter, and R. S. Prather. 2002. Transgenic pig expressing the enhanced green fluorescent protein produced by nuclear transfer using colchicine-treated fibroblasts as donor cells. Mol. Reprod. Dev. 62:300-306. Law, S. W., G. Gray, and H. B. J. Brewer. 1983. cDNA cloning of human apoA-I: amino acid sequence of preproapoA-I. Biochem. Biophys. Res. Commun. 112:257-264. Lehninger, A. L., D. L. Nelson, M. M. Cox. 2005. Principles of Biochemistry 4th ed. USA. Li, E. 2002. Chromatin modification and epigenetic reprogramming in mammalian development. Nature Review. Genetics 3:662-673. Li, W-H., M. Tanimura, C-C. Luo, S. Datta, and L. Chan. 1988. The apolipoprotein multigene family: biosynthesis, structure-function relationships, and evolution. J. Lipid Res. 29:245-271. Liu, J. L., M. K. Wamg, and L.Liar. 1999. Nuclear transfer bovine adult non-dorminant fibroblast in the ear. Science Bulletin 44:1284-1287. Litt, M. D., M. Simpson, M. Gaszner, C. D. Allis, and G. Felsenfeld. 2001. Correlation between histone lysine methylation and developmental changes at the chicken beta-globin locus. Science 293:2453-2455. Lohka, M. J., and J. L. Maller. 1985. Induction of nuclear envelope breakdown, chromosome condensation, and spindle formation in cell-free extracts. J. Cell. Biol. 101:518-523. Lu, ZH., D. B. Sittman, D. T. Brown, R. Munshi, and G. H. Leno. 1997. Histone H1 modulates DNA replication through multiple pathways in Xenopus egg extract. J Cell Sci 110:2745-2758. Martin, G. 1981. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl. Acad. Sci. 78:7635. Mayer, W., A. Niveleau, J. Walter, R. Fundele, and T. Haaf. 2000. Demethylation of the zygotic paternal genome. Nature 403:501-502. McGrath, J. and D. Solter. 1983. Nuclear transplantation in the mouse embryo by microsurgery and cell fusion. Science 220:1300-1302. McGrath, J. and D. Solter. 1984. Inability of mouse blastomere nuclei transferred to enucleated zygotes to support development in vitro. Science 226, 1317-1319. McLachlan, A. D. 1977. Repeated helical pattern in apolipoprotein-A-I. Nature 267:465-466. Mesaeli, N., K. Nakamura, E. Zvaritch, P. Dickie, E. Dziak, K. H. Krause, M. Opas, D. H. MacLennan, and M. Michalak. 1999. Calreticulin is essential for cardiac development. J. Cell Biol. 144:857-868. Meylan, E., and J. Tschopp. 2005. The RIP kinases: crucial integrators of cellular stress. Trends. Biochem. Sci. 30:151-159. Michalak, M., E. F. Corbett, N. Mesaeli, K. Nakamura, and M. Opas. 1999. Calreticulin: one protein, one gene, many functions. Biochem. J. 344:281-292. Michalak, M., R. E. Milner, K. Burns, and M. Opas. 1992. Calreticulin. Biochem. J. 285:681-692. Micheau, O., and J. Tschopp. 2003. Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell 114:181-190. Miyamoto, K., T. Furusawa, M. Ohnuki, S. Goel, T. Tokunaga, N. Minami, M. Yamada, K. Ohsumi, and H. Imai. 2007. Reprogramming events of mammalian somatic cells induced by Xenopus laevis egg extracts. Mol. Reprod. Dev. 74:1268-1277. Miyoshi, K., S. J. Rzucidlo, J. R. Gibbons, S. Arat, and S. L. Stice. 2001. Development of porcine embryos reconstituted with somatic cells and enucleated metaphase I and II oocytes matured in a protein-free medium. BMC Development Biology. 1:l2 Miyoshi, K., S. J. Rzucidlo, S. L. Pratt, and S. L. Stice. 2003. Improvements in cloning efficiencies may be possible by Increasing uniformity in recipient oocytes and donor cells Biol. Reprod. 68:1079-1086. Nash, P. D., M. Opas, and M. Michalak. 1994. Calreticulin: not just another calcium-binding protein. Mol. Cell. Biochem. 135:71-78. Ng, H. H., Q. Feng, H. Wang, H. Erdjument-Bromage, P. Tempst, Y. Zhang, and K. Struhl. 2002. Lysine methylation within the globular domain of histone H3 by Dot1 is important for telomeric silencing and Sir protein association. Genes Dev. 16:1518-1527. Nielsen, S. J., R. Schneider, U. M. Bauer, A. J. Bannister, A. Morrison, D. O''Carroll, R. Firestein, M. Cleary, T. Jenuwein, R. E. Herrera, et al. 2001. Rb targets histone H3 methylation and HP1 to promoters. Nature 412:561-565. Nishioka, K., S. Chuikov, K. Sarma, H. Erdjument-Bromage,, C. D. Allis, P. Tempst, and D. Reinberg. 2002a. Set9, a novel histone H3 methyltransferase that facilitates transcription by precluding histone tail modifications required for heterochromatin formation. Genes Dev. 16:479-489. Noma, K., C. D. Allis, and S. I. Grewal. 2001. Transitions in distinct histone H3 methylation patterns at the heterochromatin domain boundaries. Science 293:1150-1155. Novak, S., F. Paradis, C. Savard, K. Tremblay, and M. A. Sirard. 2004. Identification of Porcine Oocyte Proteins That Are Associated with Somatic Cell Nuclei after Co-Incubation. Biol. Reprod. 71:1279-1289. Ogawa, H., K. Ishiguro, S. Gaubatz, D. M. Livingston, and Y. Nakatani 2002. A complex with chromatin modifiers that occupies E2F- and Myc-responsive genes in G0 cells. Science 296:1132-1136. Oktay, K., R. S. Schenken, and J. F. Nelson. 1995. Proliferating cell nuclear antigen marks the initiation of follicular growth in the rat. Biol. Reprod. 53:295-301. Ono, Y., N. Shimozawa, M. Ito, and T. Kono. 2001. Cloned mice from fetal fibroblast cells arrested at metaphase by a serial nuclear transfer. Biol. Reprod. 64:44-50. Ostwald, T. J., and D. H. MacLennan. 1974. Isolation of a high affinity calcium-binding protein from sarcoplasmic reticulum. J. Biol. Chem. 249:974-979. Paik, W. K. and S. Kim. 1971. Protein methylation. Science 174:114 -119. Pesce, M. and Scholer, H.R. 2001. Oct-4: Gatekeeper in the beginnings of mammalian development. Stem Cells 19:271-278. Piotrowska, K., J. A. Modlinski, M. Korwin-Kossakowski, and J. Karasiewicz. 2000. Effects of preactivation of ooplasts or synchronization of blastomere nuclei in G1 on preimplantation development of rabbit serial nuclear transfer embryos. Biol. Reprod. 63:677-682. Polejaeva, I. A., S. H. Chen, T. D. Vaught, R. L. Page, J. Mullins, S. Ball, Y. Dai, J. Boone, S. Walker, D. L. Ayares, A. Colman, and K. H. Campbell. 2000. Cloned pigs produced by nuclear transfer from adult somatic cells. Nature 407:505-509. Pomerantz, J., and H. M. Blau. 2004. Nuclear reprogramming: a key to stem cell function in regenerative medicine. Nat. Cell Biol. 6:810-816. Rauch, F., J. Prud''homme, A. Arabian, S. Dedhar, and R. St-Arnaud. 2000. Heart, brain, and body wall defects in mice lacking calreticulin. Exp. Cell. Res. 256:105-111. Rea, S., F. Eisenhaber, D. O''Carroll, B. D. Strahl, Z. W. Sun, M. Schmid, M. Lachner, and T. Jenuwein. 2002. The many faces of histone lysine methylation. Curr. Opin. Cell Biol. 14:286-298. Reik, W. and J. Walter. 2001a. Evolution of imprinting mechanisms: the battle of the sexes begins in the zygote. Nature Genetics. 27:255-256. Reik, W. and J. Walter. 2001b. Genomic imprinting: parental influence on the genome. Nature Reviews. Genetics 2:21-32. Richter, J. D., N. C. Jones, and L. D. Smith. 1982. Stimulation of Xenopus oocyte protein synthesis by microinjected adenovirus RNA. Proc. Natl. Acad. Sci. 79:3789-3793. Rideout, W. M., K. Eggan, and R. Jaenisch. 2001. Nuclear cloning and epigenetic reprogramming of the genome. Science 293:1093-1098. Roth, S. Y., J. M.Denu, and C. D.Allis, 2001. Histone acetyltransferases. Annu. Rev. Biochem. 70:81-120. Rougier, N., D. Bourc'his, D. M. Gomes, A. Niveleau, M. Plachot, A. Paldi, and E. Viegas-Pequignot. 1998. Chromosome methylation patterns during mammalian preimplantation development. Genes and Development 12:2108-2113. Santos, F., B. Hendrich, W. Reik, and W. Dean. 2002. Dynamic reprogramming of DNA methylation in the early mouse embryo. Developmental Biol. 41:172-182 Santos-Rosa, H., R. Schneider, A. J. Bannister, J. Sherriff, B. E. Bernstein, N. C. Emre, S. L. Schreiber, J. Mellor, and T. Kouzarides. 2002. Active genes are tri-methylated at K4 of histone H3. Nature 419:407-411. Schultz, D. C., K. Ayyanathan, D. Negorev, G. G. Maul, and F. J. Rauscher. 2002. SETDB1: a novel KAP-1-associated histone H3, lysine 9-specific methyltransferase that contributes to HP1-mediated silencing of euchromatic genes by KRAB zinc-finger proteins. Genes Dev. 16:919-932. Segrest, J. P., D. W. Garber, C. G. Brouillette, S. C. Harvey, and G. M. Anantharamaiah. 1994. The amphipathic helix: A multifunctional structural motif in plasma apolipoproteins. Adv. Protein Chem. 45:303-369. Shemer, R., A. Walsh, S. Eisenberg, J. L. Breslow, and A. Razin. 1990. Tissue-specific methylation patterns and expression of the human apolipoprotein AI gene. J. Biol. Chem. 265:1010-1015. Shin, T. Y., D. Kraemer, J. Pryor, L. Liu, J. Rugila, L. Howe, S. Buck, K. Murphy, L. Lyons, and M. Westhusin. 2002. A cat cloned by nuclear transplantation. Nature 415:859. Shoukhart, M. M., C. K. Hung, J. D. Hennebold, and D. P. Wolf. 2003. Oct4 expression in pluripotent cells of the Rhesus Monkey. Biol. Reprod. 69:1785-1792. Shoulders, C. C., A. R. Kornblihtt, B. S. Munro, and F. E. Baralle. 1983. Gene structure of human apolipoprotein A1. Nucleic Acids Res. 11:2827-2837. Shoulders, C. C., and F. E. Baralle. 1982. Isolation of the human HDL apoprotein A1 gene. Nucleic Acids Res. 10:4873-4882. Strahl, B. D. and C. D. Allis, 2000. The language of covalent histone modifications. Nature 403:41-45. Stallcup, M. R. 2001. Role of protein methylation in chromatin remodeling and transcriptional regulation. Oncogene 20:3014-3020. Smith, M. J., and G. L. Koch. 1989. Multiple zones in the sequence of calreticulin (CRP55, calregulin, HACBP), a major calcium binding ER/SR protein. EMBO J. 8:3581-3586. Sun, W., M. Hola, K. Pedley, S. Tada, J. J. Blow, I. T. Todorov, S. E. Kearsey, and R. F. Brooks. 2000. The replication capacity of intact mammalian nuclei in Xenopus egg extracts declines with quiescence, but the residual DNA synthesis is independent of Xenopus MCM proteins. J. Cell Sci. 113:683-695. Susor, A., Z. Ellederova, L. Jelinkova, P. Halada, D. Kavan, M. Kubelka, and H. Kovarova. 2007. Proteomic analysis of porcine oocytes during in vitro maturation reveals essential role for the ubiquitin C-terminal hydrolase-L1. Reproduction. 134:559-568. Tachibana, M., K. Sugimoto, M. Nozaki, J. Ueda, T. Ohta, M. Ohki, M. Fukuda, N. Takeda, H. Niida, H. Kato, and Yoichi Shinkai. 2002. G9a histone methyltransferase plays a dominant role in euchromatic histone H3 lysine 9 methylation and is essential for early embryogenesis. Genes Dev. 16:1779-1791. Tachibana, M., K. Sugimoto, T. Fukushima, and Y. Shinkai. 2001. Set domain-containing protein, G9a, is a novel lysine-preferring mammalian histone methyltransferase with hyperactivity and specific selectivity to lysines 9 and 27 of histone H3. J. Biol. Chem. 276:25309-25317. Tan, C. K., K. Sullivan, X. Y. Li, E. M. Tan, K. M. Downcy, and A. G. So. 1987. Autoantibody to the proliferating cell nuclear antigen neutralizes the activity of the auxiliary protein for DNA-polymerase delta. Nucl Acid Res. 15:9299-9308. Tani, T., Y. Kato, and Y. Tsunoda. 2001. Direct exposure of chromosomes to nonactivated ovum cytoplasm is effective for bovine somatic cell nucleus reprogramming. Biol. Reprod. 64:324-330. Tománek, M., and E. Chronowska. 2006. Immunohistochemical localization of proliferating cell nuclear antigen (PCNA) in the pig ovary. Folia Histochemica ET Cytobiologica. 44:269-274. Treves, S., M. De Mattei, M. Landfredi, A. Villa, N. M. Green, D. H. MacLennan, J. Meldolesi, and T. Pozzan. 1990. Calreticulin is a candidate for a calsequestrin-like function in Ca2(+)-storage compartments (calciosomes) of liver and brain. Biochem. J. 271:473-480. Trewick, S. C., T. F. Henshaw, R. P. Hausinger, T. Lindahl, and B. Sedgwick. 2002. Oxidative demethylation by Escherichia coli AlkB directly reverts DNA base damage. Nature 419:174-178. Tucker, K. L., C. Beard, J. Dausmann, L. Jackson-Grusby, P. W. Laird, H. Lei, E. Li, and R. Jaenisch. 1996. Germ-line passage is required for establishment of methylation and expression patterns of imprinted but not of nonimprinted genes. Genes and Development 10:1008-1020. Tutuncu, L., P. Stein, T. S. Ord, C. J. Jorgez, and C. J. Williams. 2004. Calreticulin on the mouse egg surface mediates transmembrane signaling linked to cell cycle resumption. Dev. Biol. 270:246-60. Urnov, F. D. and A. P. Wolffe. 2001. Chromatin remodeling and transcriptional activation: the cast (in order of appearance). Oncogene 20:2991-3006. van Holde, K. E. 1988. Chromatin. New York: Springer Verlag. van Leeuwen, F., P. R. Gafken, and D. E. Gottschling. 2002. Dot1p modulates silencing in yeast by methylation of the nucleosome core. Cell 109:745-756. Vandel, L., E. Nicolas, O. Vaute, R. Ferreira, S. Ait-Si-Ali, and D. Trouche. 2001. Transcriptional repression by the retinoblastoma protein through the recruitment of a histone methyltransferase. Mol. Cell Biol. 21:6484-6494. Vitale, A. M., M. E. Calvert, M. Mallavarapu, P. Yurttas, J. Perlin, J. Herr, and S. Coonrod. 2007. Proteomic profiling of murine oocyte maturation. Mol. Reprod. Dev. 74:608-16. Wakamatsu, Y., B. Ju, I. Pristyaznhyuk, K. Niwa, T. Ladygina, M. Kinishita, K. Araki, and K. Ozato. 2001. Fertile and diploid nuclear transplants derived from embryonic cells of a small laboratory fish, medaka (Oryzias latipes). PNAS. 98:1071-1076. Wakayama, T., A. C. Perry, M. Zuccotti, K. R. Johnson, and R. Yanagimachi. 1998. Full term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature 394:369-374. Wakayama, T., I. Rodriguez, A. C. F. Perry, R. Yanagimachi, and P. Mombaerts. 1999. Mice cloned from embryonic stem cells. Proc. Natl. Acad. Sci. 96:14984-14989. Wandji, S. A., V. Sršeň, A. K. Voss, J. J. Eppig, and J. E. Fortune. 1996. Initiation in vitro of growth of bovine primordial follicles. Biol. Reprod. 55:942-948. Wandji, S. A., V. Sršeň, P. W. Nathanielsz, J. J. Eppig, and J. E. Fortune. 1997. Initiation of growth of baboon primordial follicles. Hum Reprod.12:1993-2001. Wang, H., R. Cao, L. Xia, H. Erdjument-Bromage, C. Borchers, P. Tempst, and Y. Zhang. 2001a. Purification and functional characterization of a histone H3-lysine 4-specific methyltransferase. Mol. Cell 8:1207-1217. Waterborg, J. H. 1993. Dynamic methylation of alfalfa histone H3. J. Biol. Chem. 268:4918-4921. Weaver, R. F. 2002. Molecular biology 2ed. USA. Willadsen, S. M. 1986. Nuclear transplantation in sheep embryos. Nature. 320:63-65. Williams, S. C., S. G. Grant, K. Reue, B. Carrasquillo, A. J. Lusis, and A. J. Kinniburgh. 1989. Cis-acting determinants of basal and lipid-regulated apolipoprotein A-IV expression in mice. J. Biol. Chem. 264:19009-19016. Wilmut, I., A. E. Schnieke, J. McWhir, A. J. Kind, and K.H.S. Campbell. 1997. Viable offspring derived from fetal and adult mammalian cells, Nature 385:810-813. Wolffe, A. P. 1998. Chromatin: Structure and Function. San Diego: Academic Press. Woods, G. L., K. L. White, D. K. Vanderwall, G. P. Li, K. I. Aston, T. D. Bunch, L. M. Meerdo, and B. J. Pate. 2003. A mule cloned from fetal cells by nuclear transfer. Science 301:1063. Wu, J., N. Suka, and M. Carlson. 2001. TUP1 utilizes histone H3/H2B-specific HDA1 deacetylase to repress gene activity in yeast. Mol. Cell. 7:117-26. Yang, L., L. Xia, D. Y. Wu, H. Wang, H. A. Chansky, W. H. Schubach, D. D. Hickstein, and Y. Zhang. 2002. Molecular cloning of ESET, a analysis novel of histone H3-specific methyltransferase that interacts with ERG transcription factor. Oncogene 21:148-152. Yang, X. J. 2004. Lysine acetylation and the bromodomain: a new partnership for signaling. Bioessays 26:1076-87. Yang X. J., and S. Gregoire. 2005. Class II histone deacetylases: from sequence to function, regulation, and clinical implication. Mol. Cell Biol. 25:2873-84. Yin, X.J., S. K. Cho, M. R. Park, Y. J. Im, J. J. Park, J. S. Bhak, D. M. Kwon, S. H. Jun, N. H. Kim, and J. H. Kim. 2003. Nuclear remodeling and the developmental potential of nuclear transferred porcine oocytes under delayed-activated conditions. Zygote 11:167-174. Yin, X. J., T. Tani, I. Yonemura, M. Kawakami, K. Miyamoto, R. Hasegawa, Y. Kato, and Y. Tsunoda. 2002a. Production of cloned pigs from adult somatic cells by chemically assisted removal of maternal chromosomes. Biol. Reprod. 67:442-446. Zakhartchenko, V., H. D. Reichenbach, J. Riedl, G. A. Palma, E. Wolf, and G. Brem. 1996. Nuclear transfer in cattle using in vivo-derived vs. in vitro-produced donor embryos: effect of developmental stage. Mol Reprod. Dev. 44:493-498. Zhang, Y. and D. Reinberg. 2001. Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes Dev. 15:2343-2360. Zhou, Q., J. P. Renard, G. L. Fries, V. Brochard, N. Beaujean, Y. Cherifi, A. Fraichard, and J. Cozzi. 2003. Generation of fertile cloned rats by regulating oocyte activation. Science 302:1179. Zuber, M., W. Yasui, E. M. Tan, and M. Ryoji. 1989. Quantitation and subcellular localization of proliferating cell nuclear antigen (PCNA/cyclin) in oocytes and eggs of Xenopus laevis. Exp. Cell. Res. 182:384-93.
摘要: 
哺乳動物之複製效率至今仍然不高,可能造成此低產製效率之因素很多,如供核細胞(donor cells)之種類、供核細胞與受核卵子(recipient oocytes)細胞週期之協調性、複製操作流程,以及未臻完善之體外培養系統等,都可能導致體細胞再程式化(reprogramming)不完全而無法產製複製動物。先前之研究發現,去核之成熟卵母細胞(metaphase II, MII)較原泡核期(germinal vesicle stage, GV stage)卵子或受精卵適於作為體細胞核移置(somatic cell nuclear transfer, SCNT)之受核卵子。因此,本研究之目的為利用蛋白質體學方法,比較位於不同細胞週期之卵子或細胞其蛋白質之差異性表現,以期找出可幫助供核細胞進行再程式化之可能因子,並比較分析蟾卵/蛋萃取物之蛋白質表現與其對已分化體細胞再程式化之影響。試驗一,從豬卵巢濾泡內取出原泡核期(germinal vesicle stage, GV stage)卵子,而部分GV卵子經體外成熟後可得成熟卵母細胞。將各300顆GV與MII期豬卵母細胞,經二維蛋白質聚丙烯醯胺膠體電泳法(two-dimensional polyacrylamide gel electrophoresis, 2D PAGE)分析與銀染(silver staining)呈色後,初步分析並取其中5個差異明顯之蛋白質點以胜肽質量指紋分析(peptide mass fingerprinting)進行身份鑑定,將所得到的質譜進入NCBInr資料庫比對後可鑑定4種蛋白質之身份,其分別為proliferating cell nuclear antigen(PCNA)、calreticulin(CRT)、kinase 5(RIPK 5)與apolipoprotein A-I(Apo A-I),其中PCNA在MII期表現量較高,而其他三種則在GV期有較高的表現量。試驗二,以秋水仙素(colchicine)過夜處理,使90%以上之小鼠NIH-3T3細胞與豬耳成纖維細胞(pig ear fibroblast, PEF)停留於M期,並與未經秋水仙素處理而90%以上停留於G1期之NIH-3T3與PEF,細胞分別以lysis buffer取得細胞蛋白質後進行2D PAGE分析與CBB (coomassie blue)染色。結果顯示,M期細胞之蛋白質表現明顯多於G1期細胞。試驗三,分別取出非洲爪蟾(Xenopus)卵/蛋之萃取物,並與經通透性處理(permeabilized)之小鼠NIH-3T3細胞共培養後,以免疫細胞螢光染色法觀察NIH-3T3細胞表現發育多能性標記(pluripotency marker)蛋白質Oct4,以及只表現於分化細胞之lamin A/C之情形。結果顯示,經蟾卵或蟾蛋萃取物共培養後之少部分細胞失去lamin A/C之表現,且部分細胞表現Oct4,證實蟾卵與蛋萃取物可幫助體細胞再程式化。因此,本研究分析所得之位於不同細胞週期之豬卵母細胞與體細胞差異表現之蛋白質,需進一步分析其對體細胞再程式化之影響,而蟾卵或蟾蛋萃取物中可調控體細胞再程式化之因子亦需再進一步分析。

The low efficiency in the production of cloned mammalian animals could be caused by the donor cell types, the cell cycle co-ordination between donor cells and recipient oocytes, the cloning procedure and defective culture system for cloned embryos. Any of thses would result in incomplete reprogramming of donor cells, and consequently failure of cloned animal production. It has been shown that the enucleated mature oocytes (the metaphase II stage, MII) are more suitable to be used as the recipient oocytes for somatic cell nuclear transfer (SCNT) to produce cloned mammalian animals than the enucleated immature oocytes at the germinal vesicle (GV) stage or zygotes are. Therefore, the aims of this study were to find out the protein molecules which might be involved in reprogramming by comparing the differential protein expressions in the oocytes/cells at different cell cycle stages. Additionally, the effect of Xenopus oocyte/egg extracts on the reprogramming was analysed. In Experiment 1, the porcine GV oocytes were aspirated from follicles on the ovaries collected from the local slaughter house. In vitro maturation was conducted to a part of the GV oocytes to obtain the mature oocyte. A total of 300 oocytes form each stage were subjected to proteomic analysis. Proteins were resolved by two-dimensional polyacrylamide gel electrophoresis (2D PAGE) and silver staining. Preliminary analysis revealed that there was a substantial difference in protein levels between the GV and MII stages. Five spots were chosen for protein identification using peptide mass fingerprinting, among which 4 spots were positively identified by searching the mass spectra against NCBInr database. The identified proteins were proliferating cell nuclear antigen (PCNA), calreticulin (CRT), kinase 5 (RIPK 5) and apolipoprotein A-I (Apo A-I). The expression level of PCNA was higher at the MII stage and the other three were higher at the GV stage. In Experiment 2, the mouse NIH-3T3 cells and pig ear fibroblasts (PEFs) treated with colchicines for overnight would result in more than 90% of the cells at the M phase, while most of the untreated cells would stay at the G1 phase. The cells at different cell cycle stages were lysed and subjected to 2D PAGE and coomassie blue staining. The results showed that the protein expression level in the cells was higher at the M phase than that at the G1 phase. In Experiment 3, the permeablilzed mouse NIH-3T3 cells were co-cultured with Xenopus oocyte/egg extracts. The expressions of pluripotency marker, Oct4 and lamin A/C which was expressed strictly in the differentiated cells were analyed by immunocytofluorescent staining. Although only few cells re-expressed Oct4 or lost the expression of lamin A/C, the reprogramming capability of Xenopus oocyte/egg extracts was approved. In conclusion, the effects of those identified proteins by comparison of oocytes or cells at the different cell cycles on reprogramming have to be further evaluated. Also, the factors in the Xenopus oocyte/egg extracts involved in reprogramming need to be analysed.
URI: http://hdl.handle.net/11455/24861
其他識別: U0005-2801200823184100
Appears in Collections:動物科學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.