Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/24866
標題: 探討澱粉特性及其對豬隻澱粉消化率之影響
Study on Starch Characteristics and its Influence on Starch Digestibility in Pigs
作者: 黃儀芳
Huang, Yi-Fang
關鍵字: Pig;豬;Digestibility;In vitro digestion rate;Starch granule;消化率;體外消化速率;澱粉顆粒
出版社: 動物科學系所
引用: 洪平。飼料原料要覽。1986。台灣養羊雜誌社。臺北市。 飼料化驗分析技術手冊。1987。臺灣省畜產試驗所。台南。 賴欣豐、江嘉純、邱文石、余碧。2004。豬胃動態模擬系統之應用:評估不同蛋白質濃度飼糧消化率之影響。中畜會誌33(增刊):80。 謝伶珩。2003。不同物化處理的澱粉對抗解澱粉生成之影響。碩士論文。私立中國文化大學。 Åman, P. and C. W. Newman. 1986. Chemical composition of some different types of barley grown in Montana, U.S.A. J. Cereal Sci. 4: 133-141. Åman, P., K. Hesselman, and A. C. Tilly. 1985. The variation in chemical composition of Swedish barleys. J. Cereal Sci. 3: 73-77. Andersson, L., H. Fredriksson, M. Oscarsson Bergh, R. Andersson, and P. Åman. 1999. Characterisation os starch from inner and peripheral parts of normal and waxy barley kernels. J. Cereal Sci. 30: 165-171. Badenhuizen, N. P. 1937. The structure of starch grains. Protoplasma. 28: 293-326. Baldwin, P. M., C. D. Melia, and M. C. Davies. 1997. The surface chemistry of starch granules studied by time-of-flight secondary ion mass spectrometry. J. Cereal Sci. 26: 329-346. Bach Knudsen, K. E., P. Åman, and B. O. Eggum. 1987. Nutritive value of Danish-grown barley varieties, I. Carbohydrates and other major constituents. J. Cereal Sci. 6: 173-186. Bell, J. M., A. Shire, and M. O. Keith. 1983. Effect of hull and protein contents of barley on protein and energy digestibility and feeding value for pigs. Can. J. Anim. Sci. 63: 201-211. Biliadeis, C. G., D. R. Grant, and J. R. Vose. 1981. Structure characterization of legume starches Ⅱ. Studies on acid treated starches. Cereal Chem. 58: 502-507. Blennow, A., A. M. Bay-Smidt, C. E. Olsen, and B. L. Møller. 2000. The distribution of covalently bound phosphate in the starch granule in relation to starch crystallinity . Int. J. Biol. Macromol. 27: 211-218. Brand-Miller, J. C. 1999. The glycemic index of food: implications for the food industry. Food Aust. 51: 72-73 Brennan, C. S., N. Harris, D. Smith, and P. R. Shewry. 1996. Structural differences in the mature endosperms of good and poor malting barley cultivars. J. Cereal Sci. 24: 171-177. Buléon, A., P. Colonna, V. Planchot, and S. Ball. 1998. Starch granules: starch and biosynthesis. Int. J. Biol. Macromol. 23: 85-112. Chiang, C. C. and B. Yu. 2004. Development of a dynamic in vitro digestion system of the stomach in pig. Page 88 in Proc. Anim. Sci. Congr., Asian-Austral. Assoc. Anim. Prod. Soc., Kuala Lumpur, Malaysia. Classen, H. L. 1996. Cereal grain starch and exogenous enzymes in poultry diets. Anim. Feed Sci. Technol. 62: 21-27. De Schrijver, R., K. Vanhoof, E. and G. Vande. 1999. Effect on resistant starch on large bowel fermention in rats and pigs. Nutr. Res. 19(6):927-936. Eastwood, M. A. 1992. The physiological effect of dietary fibre: an update. Annu. Rev. Nutr. 12: 19-35. Eerlingen, R. C., M. Crombez, and J. A. Delcour. 1993a. Enzyme-resistant starch.Ⅰ. Quantitative and qualitative influence of incubation time and temperature of autoclaved starch on resistant starch formation. Cereal Chem. 70: 339-344. Eerlingen, R. C., M. Deceuninck, and J. A. Delcour. 1993b. Enzyme-resistant starch. Ⅱ . Influence of amylase chain length on resistant starch formation. Cereal Chem. 70: 345-350. Eerlingen, R. C., H. Jacobs, and J. A. Delcour. 1994. Enzyme- resistant starch.Ⅴ. Effect of retrogradation of waxy maize starch on enzyme susceptibility. Cereal Chem. 71:351-355. Eerlingen, R. C., and J. A. Delcour, 1995. Formation, analysis, structure and properties of TypeⅢ enzyme resistant starch. J. Cereal Sci. 22:129-138. Elashoff , J. D., T. J. Reedy, and J. H. Meyer. 1982. Analysis of gastric emptying data. Gastroenterology. 83: 1306-1312. Englyst, H. N., H. S. Wiggins, and J. H. Cumming. 1982. Determination of the non-polysaccharides in plant foods by gas-liquid chromatography of constituent sugars as aiditol acetates. Analyst. 107:307-318. Englyst, H. N., S. M. Kingman, and J. H.Cumming. 1992. Classification and measurement of nutritionally important starch fractions. Eur. J. Clin. Nutr. 46(suppl. 2): S33-50. Englyst H. N., S. M. Kingman, and G. J. Hudson. 1996. Measurement of Resistant Starch in vitro and in vivo. Br. J. Nutr. 75:749-755 Fannon, J. E., J. M. Shull, and J. N. Bemiller. 1993. Interior channels of starch granules. Cereal Chem. 70: 611-613. Fisher, L. R., S. P. Carrington, and J. A. Odell. 1997. Deformation mechanics of individual swollen starch granules. In: Frazier, P.J., A.M. Donald, and P. Richmond, (Eds.), Starch: Structure and Functionality. The Royal Society of Chemistry, London, UK, pp. 105-114. Flores, M. P., J. I. R. Castanon, and J. M. Mcnab. 1994. Effects of tannins on starches digestibility and TMEn of triticale and semipurified starches from triticale and field beans. Br. Poult. Sci. 35: 281-286. French, D., 1972. Fine structure of starch and its relationship to the organization of starch granules. J. Jap. Soc. Starch. 19:8-25. Gallant, D. J., B. Bouchet, and P. N. Baidwin. 1997. Microscopy of starch: evidence of a new level of granule organization. Carbohydr. Polym. 32:177-191. Granum, P. E., and B. Eskeland. 1981. Nutritional significance of α-amylase inhibitors from wheat. Nutrition Reports International. 23: 155-162. Haralampu, S. G. 2000. Resistant starch-a review of the physical properties and biological impact of RS3. Cabohydr. Polym. 41:285-292. Hebeda, R. E., and W. M. Teague. 1992. Starch hydrolyzing enzymes. In Carbohydrate Chemistry. Alexander, R.I., and H.F. Zpble, (eds.), p. 65-86. A.A.C.C. St. Paul, Minnesota, U.S.A. Henningsson, A. M., E. Margareta, G. L. Nyman, and I. M. E. Björck. 2003. Influences of dietary adaptation and source of resistant starch on short-chain fatty acids in the hindgut of rats. Br. J. Nutr. 89:319-327. Huber, K. C. and J. N. BeMiller. 1997. Visualization of channels and cavities of corn and sorghum starch granules. Cereal Chem. 74: 537-541. Hizukuri, S. 1986. Polymodal distribution of the chain lengths of amylopectin and its significance. Carbohydr. Res. 147:342-347. Hizukuri, S. 1996. Starch: Analytical aspects. Ch. 9, In Carbohydrate in Food. Eliasson, A.C. (ed.), p. 347-429. Marcel Dekker, Inc., New York. Hizukuri, S. Y. Y. Takeda, M. Yasuda, and A. Suzukuri. 1981. Multi-branched nature of amylose and the action of branching enzymes. Carbohydr. Res. 94: 205-213. Jacobs, H. and J. Delcour. 1998. Hydrothermal modifications of granular starch, with retention of granular structure: a review. J. Agric. Food Chem. 46:2895-2905. Jenkins, D. J., T. M. Wolever, R. H. Taylor. 1981. Glycemic index of foods: a physiological basis for carbohydrate exchange. Am J Clin Nutr. 34(3): 362-366. Jenkins, P. 1994. X-ray and neutron scattering studies of starch granule structure. PhD thesis, University of Cambridge, UK. Kasemsuwan, T. and J. Jane. 1994. Location of amylose in normal starch granules. Location of phosphodiester cross-linking revealed by phosphorous-31 nuclear magnetic resonance. Cereal Chem. 71(3): 282-287. Kleessen, B., G. Stoof, J. Proll, D. Schmiedl, J. Noack, and M. Blaut. 1997. Feeding resistant starch affects fecal and cecal microflora and short-chain fatty acids in rats. J. Anim. Sci. 75:2453-2462. Lineback, D. R. 1984. The starch granule organization and properties. Baker’s Digest. 13:16-21. Lii, C. Y., T. W. Chiou, and Y. L. Chu. 1987. The degree of branching in amylose from tuber and legume starches. Proc. Natl. Sci. Counc. R.O.C. 11:341-345. Longstaff, M. and J. M. Mcnab. 1991a. The inhibitory effects of hull polysaccharides and tannins of field beans (Vicia faba L.) on the digestion of amino acids, starch and lipid and on digestive enzyme activities in young chick. Br. J. Nutr. 65: 199-216. Longstaff, M. and J. M. Mcnab. 1991b. The effect of concentration of tannin-rich bean hulls (Vicia faba L.) on activities of lipase (EC 3.1.1.3) and α-amylase (EC 3.2.1.1) in digesta and pancreas and on the digestion of lipid and starch by young chicks. Br. J. Nutr. 66:139-147. Lynn, A., and M. P. Cochrane. 1997. An evaluation of confocal microscopy for the study of starch granule enzymic digestion. Starch. 49:106-111. Macri, A., R. Parlamenti, V. Silano, and F. Valfre. 1977. Adaptation of the domestic chicken, Gallus Domesticus, to continuous feeding of albumin amylase inhibitors from wheat flour as gastro-resistant microgranules. Poult. Sci. 56:434-441. Manners, D. J. 1985. Some aspects of the structure of starch. Cereal Foods World. 30: 461-467. Mitchall, K. G., J. M. Bell, and F. W. Sosulski. 1976. Digestibility and feeding value of hulless barley for pigs. Can. J. Anim. Sci. 56: 505-511. Minekus, M., A. Speckmann, J. Kruse, A. Kies, and R. Havenaar. 1998. Efficacy of fungal phytase during transit through a dynamic of the porcine stomach. p 44-59. In: Development and validation of a dynamic model of the gastrointestinal tract. Drukkerij Elinkwijk B. V., Utrecht. Moran, E. T. 1982. Starch digestion in fowl. Poult. Sci. 61: 1257-1267. Nikuni Z. 1978. Studies on starch granules. Starch. 30: 105-111. Planchot, V., P. Colonna, D. J. Gallant, and B. Bouchet. 1995. Extensive degradation of native starch granules by alpha-amylase from Aspergillus fumigatus. J. Cereal Sci. 21: 163-171. Raeker, M. O., C. S., Gaines, P. L. Finney, and T. Donelson. 1998. Granule size distribution and chemical composition of starches from 12 soft wheat cultivars. Cereal Chem. 75: 721-728. Refstie, S., B. Svihus., K. D. Shearer, and T. Storebakken. 1999. Nutrient digestibility in Atlantic salmon and broiler chickens related to viscosity and non-starch polysaccharide content in different soyabean products. Anim. Feed Sci. Technol. 79: 331-345. Rogel, A. M., E. F. Annison, W. L. Bryden, and D. Balnave. 1987. The digestion of wheat starch in broiler chickens. Austr. J. Agric. Res. 38: 639-649. SAS institute. 2006. SAS User’s Guide. Version 9 Edition. SAS Institute Inc., Carry, NC Saunders, R. M. 1975. α-amylase inhibitors in wheat and other cereals. Cereal Foods World. 20: 282-285. Seib, P. A. and K. Woo. 1999. Food grade starch resistant to alpha-amylase and method of preparing the same,US Patent # 5855946 Silvent, D., and Y. Pomeranz. 1989. Enzyme-resistant starch Ⅰ. Characterization and evaluation by enzymatic, thermoanalytical, and microscopic methods. Cereal Chem. 66:342-347. Oates, C. G. 1997. Towards an understanding of starch granule structure and hydrolysis. Trends Food Sci. Technol. 8: 375–382. Ørskov, E. R., and I. McDonald. 1979. The estimation of protein degradability in the rumen from incubation measurement weighted according to rate of passage. J. Agric. Sci. (Camb.) 92: 499-503. Thacker, P. A., J. M. Bell, H. L. Classen, G. L. Campbell, and B. G. Rossnagel. 1988. The nutritive value of hulless barley for swine. Anim. Feed Sci. Technol. 19: 191-196. Thomas, D. J., and W. A. Atwell. 1999. Special Topics. Ch. 9, In Starch.: Eagan press: U.S.A., P83-87. Thompson, D. B. 2000. Strategies for the manufacture of resistant starch. Trends Food Sci. Technol. 11: 245-253. Topping, D. L., J. M. Gooden, I. L. Brown, D. A. Biebrick, L. McGrath, R. P. Trimble, M. Choct, and R. J. Illman. 1997. A high amylase (amylomaize) starch raises proximal large bowel starch and increases colon length in pigs. J. Nutr. 127:615-622. Vasanthan, T., and R. S. Bhatty. 1996. Physicochemical properties of small- and large- granule starches of waxy, regular and high amylose barleys. Cereal Chem. 73:199-207. Weurding, R. E., A. Veldman, W. A. G. Veen, P. J. van der Aar, and M. W. A. Verstegen. 2001a. Starch digestion rate in the small intestine of broiler chickens differs among feedstuffs. J. Nutr. 131: 2329-2335. Weurding, R. E., A. Veldman, W. A. G. Veen, P. J. van der Aar, and M. W. A. Verstegen. 2001b. In vitro starch digestion correlates well with rate and extent of starch digestion in broiler chickens. J. Nutr. 131: 2336-2342. Weurding, R. E., H. Enting, and M. W. A. Verstegen. 2003. The relation between starch digestion rate and amino acid level for broiler chickens. Poult. Sci. 82: 279-284. Williams, C. H., D. J. David, and O. lismaa. 1962. The determination of chromic oxide in faeces samples by atomic absorption spectrophotometry. J. Agri. Sci. 59: 381-385. Wiseman, J., N. T. Nicol, and G. Norton. 2000. Relationship between apparent metabolisable (AME) values and in vivo/in vitro starch digestibility of wheat for broiler. World’s Poult. Sci. J. 56: 305-318. Zihua, A., and J. Jane. 2007. Characterization and modeling of the A- and B-granule starches of wheat, triticale, and barley. Carbohydr. Polym. 67: 46-55. Yu, B., J. C. Hsu, and P. W. S. Chiou. 1997. Effects of β-glucanase supplementation of barley diets in growth performance of broilers. Anim. Feed Sci. Technol. 70: 353-36.
摘要: 
本研究之目的為以飼料原料澱粉顆粒結構、體外in vitro測定消化率及消化速率方面來了解動物對不同澱粉水解之模式。試驗分別以玉米、脫殼大麥、小麥及馬鈴薯四種飼料原料探討其澱粉結構,進而當作主要澱粉來源分別配製等蛋白質、等代謝能之試驗飼糧,經澱粉水解試驗(in vitro hydrolysis)、動態體外試驗(dynamic in vitro)及豬隻迴腸(in vivo)消化率等測定澱粉消化特性。以掃描式電子顯微鏡觀察澱粉顆粒結構,玉米澱粉顆粒呈多角體之球形,粒徑為2~10 μm,脫殼大麥及小麥澱粉顆粒呈圓餅形及球形,粒徑為2~30 μm,馬鈴薯顆粒最大,粒徑約5~100 μm,外觀為橢圓球形。經人工消化液處理後之澱粉顆粒電顯圖顯示,玉米澱粉比麥類澱粉顆粒容易被酵素水解而成多孔狀外觀;馬鈴薯澱粉則最不容易被酵素破壞。In vitro澱粉消化試驗結果顯示,玉米飼糧組in vitro澱粉水解率顯著較脫殼大麥及馬鈴薯飼糧組高(P <0.05);以豬隻消化道動態模擬系統(dynamic system of the gastrointestinal tract of pigs)評估澱粉消化率之結果亦為玉米飼糧組澱粉消化率較其他三組高。在in vivo澱粉消化率方面,玉米飼糧組顯著較脫殼大麥及小麥飼糧組高(P <0.05)。In vitro澱粉水解率(Y)及in vivo(X)澱粉消化率之線性關係為Y=0.152X+82.567(R2=0.9924);Dynamic in vitro澱粉消化率(X)及in vitro(Z)澱粉水解率之線性關係為Z=2.6879X-136.72(R2=0.9334)。消化動力學特性為應用消化動力學模式DCt=D × (1-e-k(d)×t)來評估。In vitro澱粉水解速率(kd)以玉米、脫殼大麥飼糧組較高,小麥飼糧組次之,馬鈴薯飼糧則最低。綜上所述,以in vitro澱粉水解率及動態模擬系統之澱粉消化率可大致預估豬隻迴腸末端澱粉消化率,但並非適用於每種飼糧。In vitro澱粉水解動力學特性可用以評估澱粉於豬隻消化道之消化速率與其在迴腸末端消化是否完全。另外,藉豬隻消化道動態模擬系統研究澱粉消化動態模式,受限於飼糧種類、特性,其效能有待評估。澱粉顆粒結構及被酵素作用之程度、in vitro消化率與豬隻迴末澱粉消化率呈相同趨勢,增加了以澱粉顆粒超顯微特性及in vitro澱粉消化率評估in vivo澱粉消化之可行性。

The purpose of this study was to realize the kinetics of starch digestion by the correlation among feedstuff starch granular structure, in vitro digestion rate, and digestibility of starch. The scanning electron micrographs(SEM)of starch granules showed corn starch granule is polyhedron, granule size was around 2-10μm. Dehulled barley and wheat were bimodal distribution in starch granule size, the large disk shape granules being between 10-30μm in size and the small spheroidal granules being between 2-10μm in size. Potato starch granules are large with a smooth round oval shape, its granules range in size from 5-100μm. The SEM of starch granule also showed the susceptibility to enzymatic degradation of corn starch granules was higher than dehulled barley or wheat and displayed perforated surfaces, but the potato starch was limited. Taking corn, dehulled barley, wheat and potato to study starch structure, and then were each incorporated into the experimental diets. The starch digestibility of four diets were determined in vitro hydrolysis、dynamic in vitro and in vivo with ileal cannulated pig. In vitro corn starch hydrolysis was significantly higher than both dehulled barley and potato starch hydrolysis(P <0.05). Dynamic in vitro corn starch digestibility was higher than the other diets. Ileal starch digestibility of corn was significantly higher than dehulled barley and wheat digestibility(P <0.05). The digestibility of starch measured in in vitro and in vivo showed the high correlation(R2=0.9924). The relation between in vitro starch hydeolysis and dynamic in vitro starch digestibility was high(R2=0.9334).The kinetic characteristics of starch was predicted with kinetic model:DCt=D × (1-e-k(d)×t). In vitro starch digestion rate of corn and dehulled barley were the highest, followed by wheat and potato. In conclusion, in vitro starch hydrolysis and dynamic in vitro starch digestibility could predict in vivo ileal satrch digestibility, but it wasn’t fit in with each diet. The kinetic characteristics of in vitro starch hydrolysis could evaluate in vivo starch digestion rate and extent in ileum of pigs. However, using dynamic system of the gastrointestinal tract of pigs to study starch digestion kinetic characteristics was limited with the diet types and properties, its efficiency was worthy to evaluated. The present study suggested that there was similar trend of characteristic in starch granule ultrastructure, in vitro and in vivo starch digestibility among different starch sources.
URI: http://hdl.handle.net/11455/24866
其他識別: U0005-2808200705323300
Appears in Collections:動物科學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.