Please use this identifier to cite or link to this item:
標題: 豬大腸桿菌F4ab/ac抵抗力相關基因單核苷酸多態型對藍瑞斯、約克夏及杜洛克豬生長性能與屠體性狀之影響
Effect of single nucleotide polymorphisms in E. coli F4ab/ac resistance related genes on the growth and carcass traits of Landrace, Yorkshire and Duroc pigs
作者: 游永佳
Yu, Yung-Chia
關鍵字: pig;豬;single nucleotide polymorphism;Escherichia coli;單一核甘酸多態性;大腸桿菌
出版社: 動物科學系所
引用: 王旭昌。2002。丹麥與我國種豬育種制度之比較(上)。畜牧報導月刊第三十期。 王繼英、郭建鳳、孫守禮、郭立輝、藺海潮、王誠、武英。2009。萊蕪黑豬a1岩藻糖轉移酶基因(FUT 1)不同基因型對大腸桿菌F18抵抗力研究。華北農學報24:64-68。 行政院農業委員會。2010。中華民國99年11月底養豬頭數調查報告。 池雙慶。1980。種豬選拔指數與本省豬種改良方向。中畜會誌9:55-69。 陳清、呂清泉、久米常夫。1984。台灣哺乳豬下痢症由來Escherichia coli之研究。台灣省畜衛所研報20:29-33 高瑞娟、張秀鑾、賴永裕、吳松鎮、吳明哲。1997。抗緊迫豬群之種豬生長性能與背脂厚度。中畜會誌26:23-36, 施啟順。2001。豬腸毒素大腸桿菌病抵抗力基因及抗病育種。第18-21頁。中國農業科技出版社。北京。 黃錦源。1998。台灣省畜產試驗所四十週年所慶家畜禽遺傳育種研討會論文集。第1-5頁。行政院農業委員會畜產試驗所。新化。 張秀鑾、黃鈺嘉、吳明哲、李世昌。1998。豬經濟性狀測定與品種改良。第329-333頁。行政院農業委員會畜產試驗所。新化。 Alexa, P., K. Stouracova, J. Hamrik, and I. Rychlik. 2001. Gene typing of the colonization factors K88 (F4) in enterotoxigenic Escherichia coli strains isolated from diarrhoeic piglets. Vet. Med. 46:46-49. Ando, A., and P. Chardon. 2006. Gene organization and polymorphism of the swine major histocompatibility complex. J. Anim. Sci. 77:127-137. Asano, A., J. H. Ko, T. Morozumi, N. Hamashima, and T. Watanabe. 2002. Polymorphisms and the antiviral property of porcine Mx1 protein. J. Vet. Med. Sci. 64:1085-1089. Bao, W. B., L. Ye, J. Zhu, and Z. Y. Pan. 2011. Evaluation of M307 of FUT1 gene as a genetic marker for disease resistance breeding of sutai pigs. Mol. Biol. Rep. doi: 10.1007/s11033-011-1208-1. Bijlsma, I. G., and J. Bouw. 1987. Inheritance of K88-mediated adhesion of Escherichia coli to jejunal brush borders in pigs: a genetic analysis. Vet. Res. Commun. 11:509-518. Blomberg, L., A. Henriksson, and P. L. Conway. 1993. Inhibition of adhesion of Escherichia coli K88 to piglet ileal mucus by Lactobacillus spp. Appl. Environ. Microbiol. 59:34-39. Chen, P., T. J. Baas, J. W. Mabry, J. C. Dekkers, and K. J. Koehler. 2002. Genetic parameters and trends for lean growth rate and its components in US Yorkshire, Duroc, Hampshire, and Landrace pigs. J. Anim. Sci. 80:2062-2070. Donis-Keller, H., P. Green, C. Helms, S. Cartinhour, B. Weiffenbach, K. Stephens, T. P. Keith, D. W. Bowden, D. R. Smith, E. S.Lander, D. Botstein, G. Akots, K. S. Rediker, T. Gravius, V. Brown, M. Rising, C. Parker, J. A. Powers, D. E. Watt, A. Bricker, P. Phipps, H. Muller-Kahle, T. R. Fulton, S. Ng, J. W. Schumm, J. C. Braman, R. G. Knowlton, D. F. Barker, S. M. Crooks, S. E. Lincoln, M. J. Daly, and J. Abrahamson. 1987. A genetic linkage map of the human genome. Cell 51: 319-337. Edfors-Lilja, I., U. Gustafsson, Y. Duval-Iflah, H. Ellergren, M. Johansson, R. K. Juneja, L. Marklund, and L. Andersson. 1995. The porcine intestinal receptor for Escherichia coli K88ab, K88ac: regional localization on chromosome 13 and influence of IgG response to the K88 antigen. Anim. Genet. 26:237-242. Edfors-Lilja, I., and P. Wallgren. Escherichia coli and Salmonella diarrhoea in pigs. 2000. In Breeding for disease resistance in farm animals, 2nd Ed. CABI Publishing, Wallingford.p 253-267. Fan, Y. H., K. C. Chow, S. Y. Huang, L. M. Chi, C. Huang, and S. H. Chiou. 2007. A missense polymorphism in porcine interferon-gamma cDNA affects antiviral activity of the protein variant. Mol. Immunol. 44:3297-3304. Frydendahl, K., T. Kåre Jensen, J. Strodl Andersen, M. Fredholm, and G. Evans. 2003. Association between the porcine Escherichia coli F18 receptor genotype and phenotype and susceptibility to colonisation and postweaning diarrhoea caused by E. coli O138:F18. Vet. Microbiol. 93:39-51. Gao,. L., F. X. Jing, J. B. Yang, and J. L. Zhao. 2005. Detection for single nucleotide polymorphisms. Yi chuan 27:110-122. Gibbons, R. A., R. Sellwood, M. Burrows, and P. A. Hunter. 1977. Inheritance of resistance to neonatal Escherichia coli diarrhoea in pig: examination of the genetic system. Theor. Appl. Genet. 51:65-70. Goffaux, F., B. China, L. Dams, A. Clinquart, and G. Daube. 2005. Development of a genetic traceability test in pig based on single nucleotide polymorphism detection. Forensic. Sci. Int. 151:239-247. Guérin, G., Y. Duval-Iflah, M. Bonneau, M. Bertaud, P. Guillaume, and L. Ollivier. 1993. Evidence for linkage between K88ab, K88ac intestinal receptors to Escherichia coli and transferrin loci in pigs. Anim. Genet. 24:393-396. Guinée, P. A. M., and W. H. Jansen. 1979. Behavior of Escherichia coli K antigens K88ab, K88ac, and K88ad in immunoelectrophoresis, double diffusion, and hemagglutination. Infect. Immun. 23:700-705. Higuchi, T., T. Orita, S. Nakanishi, K. Katsuya, H. Watanabe, Y. Yamasaki, I. Waga, T. Nanayama, Y. Yamamoto, W. Munger, H. W. Sun, R. J. Falk, J. C. Jennette, D. A. Alcorta, H. Li, T. Yamamoto, Y. Saito, and M. Nakamura. 2004. Molecular cloning, genomic structure, and expression analysis of MUC20, a novel mucin protein, up-regulated in injured kidney. J. Biol. Chem. 279:1968-1979. Holoda, E., H. Vu-Khac, S. Andraskova, Z. Chomova, A. Wantrubova, M. Krajnak, and E. Pilipcinec. 2005. PCR assay for detection and differentiation of K88ab1, K88ab2, K88ac, and K88ad fimbrial adhesins in E. coli strains isolated from diarrheic piglets. Folia. Microbiol (Praha) 50:107-112. Huang, S. Y., W. C. Lee, M. Y. Chen, S. C. Wang, C. H. Huang, H. L. Tsou, and E. C. Lin. 2004. Genotypes of 5’-flanking region in porcine heat-shock protein 70.2 gene affect backfat thickness and growth performance in Duroc boars. Livest. Prod. Sci. 85:181-187. Huang, S. Y., M. T. Chung, Y. C. Chen, H. L. Tsou, and H. L. Li. 2008. Association of polymorphism in alpha (1,2) fucosyltransferase gene with growth performance in two western pig breeds in Taiwan. Livest. Sci. 114:336-340. Jacobsen, M., S. S. Kracht, G. Esteso, S. Cirera, I. Edfors, A. L. Archibald, C. Bendixen, L. Andersson, M. Fredholm, and C. B. Jørgensen. 2010. Refined candidate region specified by haplotype sharing for Escherichia coli F4ab/F4ac susceptibility alleles in pigs. Anim. Genet. 41:21-25. Jacobsen M., S. Cirera, D. Joller, G. Esteso, S. S. Kracht, I. Edfors, C. Bendixen, A. L. Archibald, P. Vogeli, S. Neuenschwander, H. U. Bertschinger, A. Rampoldi, L. Andersson, M. Fredholm, and C. B. Jøgensen. 2011. Characterisation of five candidate genes within the ETEC F4ab/ac candidate region in pigs. BMC Res. Notes. 4:225-233. Jensen, G. M., K. Frydendahl, O. Svendsen, C. B. Jørgensen, S. Cirera, M. Fredholm, J. P. Nielsen, and K. Møller. 2006. Experimental infection with Escherichia coli O149:F4ac in weaned piglets. Vet. Microbiol. 115:243-249. Jeyasingham, M. D., P. Butly, T. P. King, R. Begbie, and D. Kelly. 1999. Escherichia coli K88 receptor expression in intestine of disease-susceptible weaned pigs. Vet. Microbiol. 68:219- 234. Ji, H., J. Ren, X. Yan, X. Huang, B. Zhang, Z. Zhang, and L. Huang. 2011. The porcine MUC20 gene: molecular characterization and its association with susceptibility to enterotoxigenic Escherichia coli F4ab/ac. Mol. Biol. Rep. 38:1593-1601. Jiang, X. P., Y. G. Liu, Y. Z. Xiong, and C. Y. Deng. 2005. Effects of FUT1 gene on meat quality and carcass traits in swine. Yi Chuan 27:566-570. Joller, D. 2009. Comparative molecular approaches to identify host determinants mediating adhesion of E. coli F4 strains in pigs. PhD Thesis. Swiss Federal Institute of Technology, Zurich, No. 18518. Jørgensen, C. B., S. Cirera, S. I. Anderson, A. L. Archibald, T. Raudsepp, B. Chowdhary, I. Edfors-Lilja, L. Andersson, and M. Fredholm. 2003. Linkage and comparative mapping of the locus controlling susceptibility towards E. coli F4ab/ac diarrhoea in pigs. Cytogenet. Genome Res. 102:157-162. Jørgensen, C. B., S. Cirera, A. L. Archibald, L. Andersson, M. Fredholm, and I. Edfors-Lilja. 2004. Porcine polymorphisms and methods for detecting them, Patent number WO2004048606. Judge, M. D., E. D. Aberle, J. C. Forrest, H. B. Hedrick and R. A. Merkel. 1989. Principles of Meat Science. 2nd Ed., p97, Kendall/Hunt Publishing Co., Dubuque, IA, U. S. A. Linden, S. K., P. Sutton, N. G. Karlsson, V. Korolik, and M. A. McGuckin. 2008. Mucins in the mucosal barrier to infection. Mucosal Immunol. 1:183-197. Miao, Y. S., P. A. Tu, Y. H. Chen, Y. C. Chen, E. C. Lin, S. T. Ding, and P. H. Wang. 2008. Study on the association between polymorphism of SLA-DQB gene and litter size in Landrace sows. J. Chin. Soc. Anim. Sci. 37 (suppl.): 194. Meijerink, E., R. Fries, P. Vögeli, J. Masabanda, G. Wigger, C. Stricker, S. Neuenschwander, H. U. Bertschinger, and G. Stranzinger. 1997. Two alpha(1, 2) fucosyltransferase genes on porcine chromosome 6q11 are closely linked to the blood group inhibitor (S) and Escherichia coli F18 receptor (ECF18R) loci. Mamm. Genome 8:736-741. Moncada, D. M., S. J. Kammanadiminti, and K. Chadee. 2003. Mucin and Toll-like receptors in host defense against intestinal parasites. Trends. Parasitol. 19:305-311. Moniaux, N., S. Nollet, N. Porchet, P. Degand, A. Laine, and J. P. Aubert. 1999. Complete sequence of the human mucin MUC4: a putative cell membrane-associated mucin. Biochem. J. 338:325-333. Moniaux, N., F. Escande, S. K. Batra, N. Porchet, A. Laine, and J. P. Aubert. 2000. Alternative splicing generates a family of putative secreted and membrane-associated MUC4 mucins. Eur. J. Biochem. 267:4536-4544. Moon, H. W., L. J. Hoffman, N. A. Cornick, S. L. Booher, and B. T. Bosworth. 1999. Prevalences of some virulence genes among Escherichia coli isolates from swine presented to a diagnostic laboratory in Iowa. J. Vet. Diagn. Invest.11:557-560. Nataro, J. P., and J. B. Kaper. 1998. Diarrheagenic Escherichia coli. Clin. Microbiol. Rev. 11:142-201. Nagy, B., S. C. Whipp, H. Imberechts, H. U. Bertschinger, E. A. Dean-Nystrom, T. A. Casey, and E. Salajka. 1997. Biological relationship between F18ab and F18ac fimbriae of enterotoxigenic and verotoxigenic Escherichia coli from weaned pigs with oedema disease or diarrhoea. Microb. Pathogen. 22: 1-11. Niu, X., Y. Li, X. Ding, and Q. Zhang. 2011. Refined mapping of the Escherichia coli F4ab/F4ac receptor gene(s) on pig chromosome 13. Anim. Genet. 42:552-555. Ojeniyi, B., P. Ahrens, and A. Meylin. 1994. Detection of fimbrial and toxin genes in Escherichia coli and their prevalence in piglets with diarrhoea. The application of colony hybridzation assay, polymerase chain reaction and phenotypic assays. Zentralbl. Veterinarmed. B.41:49-59. Orskov, I., F. Orskov, W. J. Sojka, and W.Witting, 1964. K antigens k88ab (l) and k88ac (l) in E. coli. a new o antigen: 0147 and a new k antigen: k89(b). Acta. Pathol. Microbiol. Scand. 62:439-447. Peelman, L. J. 1999. Genetic investigation of the resistance mechanisms of the pig against diarrhea caused by E. coli. Verh. K. Acad. Geneeskd. Belg. 61:489-515. Python, P. 2003. Genetic host determinants associated with the adhesion of E. coli with fimbriae F4 in swine. PhD Thesis. Swiss Federal Institute of Technology, Zurich, No. 15279. Python, P., H. Jörg, S. Neuenschwander, C. Hagger, C. Stricker, E. Bürgi, H. U. Bertschinger, G. Stranzinger, and P. Vögeli. 2002. Fine-mapping of the intestinal receptor locus for enterotoxigenic Escherichia coli F4ac on porcine chromosome 13. Anim Genet. 33:441-447. Rampoldi, A., M. J. Jacobsen, H. U. Bertschinger, D. Joller, E. Bürgi, P. Vögeli, L. Andersson, A. L. Archibald, M. Fredholm, C. B. Jørgensen, and S. Neuenschwander. 2011. The receptor locus for Escherichia coli F4ab/F4ac in the pig maps distal to the MUC4-LMLN region. Mamm. Genome 22:122-129. Rasschaert, K., F. Verdonck, B. M. Goddeeris, L. Duchateau, and E. Cox. 2007. Screening of pigs resistant to F4 enterotoxigenic Escherichia coli (ETEC) infection. Vet. Microbiol. 123:249-253. Ringel, J., and M. Lohr. 2003. The MUC gene family: their role in diagnosis and early detection of pancreatic cancer. Mol. Cancer 7: 2-9. Roselli, M., A. Finamore, M. S. Britti, S. R. Konstantinov, H. Smidt, W. M. de Vos, and E. Mengheri. 2007. The novel porcine Lactobacillus sobrius strain protects intestinal cells from enterotoxigenic Escherichia coli K88 infection and prevents membrane barrier damage. J .Nutr. 137:2709-2716. SAS Institute. 2002. The SAS System for Windows. Release 9.1 SAS Inst. Inc., Cary, NC. Sellwood, R. 1979. Escherichia coli diarrhoea in pigs with and without the K88 receptor. Vet. Rec. 105: 228-230. Shimamura, T., H. Ito, J. Shibahara, A. Watanabe, Y. Hippo, H. Taniguchi, Y. Chen, T. Kashima, T. Ohtomo, F. Tanioka, H. Iwanari, T. Kodama, T. Kazui, H. Sugimura, M. Fukayama, and H. Aburatani. 2005. Overexpression of MUC13 is associated with intestinal-type gastric cancer. Cancer Sci. 96:265-273. Sellier, P., and G. Monin. 1994. Genetics of pig meat quality: a review. J. Muscle Foods 5: 187-219. Sun, H. S., L. Wang, M. F. Rothschild, C. K. Tuggle. 1998. Mapping of the natural resistance-associated macrophage protein 1 (NRAMP1) gene to pig chromosome 15. Anim. Genet. 29:138-140. Svensmark, B., S. E. Jorsal, K. Nielsen, and P. Willeberg. 1989. Epidemiological studies of piglet diarrhoea in intensively managed Danish sow herds. I. Pre-weaning diarrhoea. Acta. Vet. Scand. 30:43-53. Van Poucke, M., M. Yerle, C. Tuggle, F. Piumi, C. Genet, A. Van Zeveren, and L. J. Peelman. 2001. Integration of porcine chromosome 13 maps. Cytogenet. Cell Genet. 93:297-303. Vignal, A., D. Milan, M. Sancristobal, and A. Eggen. 2002. A review on SNP and other types of molecular markers and their use in animal genetics. Genet. Sel. Evol. 34:275-305. Walsh, M. D., J. P. Young, B. A. Leggett, S. H. Williams, J. R. Jass, and M. A. McGuckin. 2007. The MUC13 cell surface mucin is highly expressed by human colorectal carcinomas. Human Pathology 38:883-892. Wang, Y., J. Ren, L. Lan, X. Yan, X. Huang, Q. Peng, H. Tang, B. Zhang, H. Ji, and L. Huang. 2007. Characterization of polymorphisms of transferrin receptor and their association with susceptibility to ETEC F4ab/ac in pigs. J. Anim. Breed. Genet. 124:225-229. Wigley, P. 2004. Genetic resistance to Salmonella infection in domestic animals. Res. Vet. Sci. 76:165-169. Williams, S. J., D. H. Wreschner, M. Tran, H. J. Eyre, G. R. Sutherland, and McGuckin M.A. 2001. MUC13, a novel human cell surface mucin expressed by epithelial and hemopoietic cells. J. Biol. Chem. 276:18327-18336. Wilson, M. 1995. Segregated early weaning. Pig Lett. 15:17-20. Wu, H., D. Cheng, and L. Wang. 2008. Association of polymorphisms of Nramp1 gene with immune function and production performance of Large White pig. J. Genet. Genomics 35:91-95. Zhang, B., J. Ren, X. Yan, X. Huang, H. Ji, Q. Peng, Z. Zhang, and L. Huang. 2008. Investigation of the porcine MUC13 gene: isolation, expression, polymorphisms and strong association with susceptibility to enterotoxigenic Escherichia coli F4ab/ac. Anim. Genet. 39:258-266. Zhang, J., M. Yasin, C. A. C. Carraway, and K. L. Carraway. 2006. MUC4 expression and localization in gastrointestinal tract and skin of human embryos. Tissue Cell 38:271-275.
下痢是仔豬最普遍的疾病,大腸桿菌則為常見的腸道病原,會導致新生仔豬下痢及離乳豬水腫病。腸毒素大腸桿菌是否能在小腸上繁殖,主要受到在小腸絨毛刷狀緣是否有受體所影響,若小腸刷狀緣有受體,菌體表面的菌毛會與小腸黏膜上皮細胞的刷狀緣黏合而致病。豬腸毒素大腸桿菌F4ab/ac抵抗力相關基因已被定位於第13號染色體長臂41區,mucin 4 (MUC4)、mucin 13 (MUC13)和transferrin receptor (TFRC)基因已被證實為腸毒素大腸桿菌F4ab/ac抵抗力的候選基因,唯選拔F4ab/ac抵抗力對豬隻生長性能與屠體性狀是否有負面影響則尚未有報告,因此,本研究之目的在探討杜洛克、藍瑞斯和約克夏純種豬腸毒素型大腸桿菌F4ab/ac抵抗力相關基因單核苷酸多態型(single nucleotide polymorphisms, SNPs)及其與生長性能和屠體性狀之關係。生長性能部分研究共使用1480頭以隔離早期離乳進豬之種豬性能檢定公豬(1057頭杜洛克、317頭藍瑞斯和106頭約克夏),測量性狀包括背脂厚度、隻日增重、飼料效率、到達110kg日齡、150日齡體重等生長性狀,並計算其選拔指數;屠體性狀部分研究則使用159頭來自同一民間豬場之純種豬(100頭杜洛克、47頭藍瑞斯和12頭約克夏),公豬與母豬分別為74頭與85頭,測量性狀包括屠宰率、第一肋背脂厚度、最後肋背脂厚度、最後腰椎背脂厚度、屠宰後45分鐘與24小時里肌及後腿部位之pH值;以聚合酶連鎖反應限制片段長度多態型分析法進行各候選基因SNPs分析
。研究結果顯示台灣藍瑞斯、約克夏和杜洛克之TFRC無多態型。MUC4-C8227G具易感性之G對偶基因頻率於種豬性能檢定之杜洛克、藍瑞斯和約克夏豬分別為0.02、0.46和0.51,於民間豬場母豬者為0.04、0.50和0.60,公豬為0.05、0.42和0.07;MUC13-A908G基因具易感性之G對偶基因頻率於種豬性能檢定之杜洛克、藍瑞斯和約克夏豬分別為0.50、0.71和0.62,於民間豬場者母豬為0.53、0.80和0.50,公豬為0.42、0.77和0.50,不同品種間MUC4和MUC13基因型頻率具顯著差異(P<0.0007)。MUC4及MUC13基因多態型對杜洛克和約克夏生長性狀均無顯著影響(P>0.05),MUC4基因多態型會影響藍瑞斯豬到達110公斤日齡及150日齡時體重,MUC13基因多態型則會影響其背脂厚度;屠體性狀方面,對F4ac易感之MUC13 GG基因型有較高的屠後pH值。綜合本研究結果可知以MUC4及MUC13基因SNPs選拔腸毒素型大腸桿菌F4ab/ac抵抗病力將不會影響約克夏和杜洛克豬隻之生長性能,但選拔帶有MUC4抗病基因型藍瑞斯純種豬可能會影響其到達110公斤日齡和150日齡時體重,而MUC13基因SNPs對屠體性狀之效應則需更進一步驗證。

Diarrhea of neonatal and weaning pigs is a serious disease in pig industry.
Enterotoxigenic E. coli (ETEC) expressing F4 fimbriae is a common porcine enteric
pathogen, causing diarrhea in new born and weaning pigs, and edema disease in pigs after
weaning. The F4 fimbriae are filamentous surface appendages that allow the bacteria to
attach to F4 variant specific receptors on brush borders of enterocytes, and then to
colonize the small intestine of piglets. The locus controlling susceptibility towards ETEC
F4ab/ac has been mapped to SSC13q41. The mucin 4 (MUC4), mucin 13 (MUC13) and
transferrin receptor (TFRC) genes have been proposed as candidate genes for the disease
resistance to ETEC F4ab/ac. However, there was still no report on the possible effect of
selecting resistance to ETEC F4ab/ac on the growth performance and carcass traits in
pigs. The purpose of this study was to investigate the effect of single nucleotide
polymorphisms (SNPs) in ETEC F4ab/ac resistance-related genes on the growth
performance and carcass in purebred pigs in Taiwan. For evaluating the effect of
selecting SNPs on growth performance, 1480 centrally performance tested purebred boars
(1057 Duroc, 317 Landrace, and 106 Yorkshire) were used. The performance traits
included average daily gain, feed conversion ratio, backfat thickness, age at 110 kg of
body weight, and body weight at 150 days of age. The selection index of each individual
was also calculated. For carcass traits, a total of 159 purebred pigs (100 Duroc, 47
Landrace and 12 Yorkshire) from a commercial farm were used. There were 74 males
and 85 females. The carcass traits included dressing percentage, backfat thickness at the
first-rib, the last-rib, and the last lumbar backfat and pH value of ham and loin muscle at
45 minutes and 24 hours postmortem. The genotypes of MUC4, MUC13 and TFRC SNPs
were determined by polymerase chain reaction based restriction fragment length
polymorphism. The results indicated that there was no polymorphism in TFRC. The
allelic frequencies of the ETEC F4ab/ac susceptive G allele in MUC4-C8227G in
centrally performance tested Duroc, Landrace, and Yorkshire pigs were 0.02, 0.46, and
0.51, respectively. The allelic frequencies in the pigs from the commercial farm in female
were 0.04, 0.50, and 0.60. In males, the allelic frequencies were 0.05, 0.42, and 0.07. The
allelic frequencies of G allele in MUC13-A908G in the centrally performance tested
boars were 0.50, 0.71, and 0.62 in the three breeds of pigs. The allelic frequencies of
MUC13-A908G in female pigs of the three breeds from the commercial pig farm were
0.53, 0.80, and 0.50. In males, the allelic frequencies were 0.42, 0.77, and 0.50. Results
of statistical analysis revealed that there was no significant effect of the SNPs in MUC4
and MUC13 on the growth performance in Duroc and Yorkshire (P>0.05). The SNP in
MUC4 showed significant effect on days of age arrive 110 kg body weight and body
weight at 150 days of age of Landrace boars. For carcass traits, the susceptible GG type
in MUC13 showed higher pH value than other genotypes. The results of this study
suggested that selecting disease resistance to ETEC F4ab/ac by SNPs in MUC4 and
MUC13 may not affect the growth performance in Duroc and Yorkshire pigs, but may
affect the growth of Landrace pigs. However, the effect of SNP in MUC13 on carcass
traits requires further validation.
其他識別: U0005-0102201216191100
Appears in Collections:動物科學系

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.