Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/24918
標題: 改善體細胞核轉置鼠胚產製與發育效率之研究
Study to improve the efficiency of production and development of cloned mouse embryos
作者: 陳信宇
Chen, Sin-Yu
關鍵字: somatic cell nuclear transfer;體細胞核轉置;mouse embryo;reprogramming;鼠胚;再程式化
出版社: 動物科學系所
引用: 參考文獻 江芊玥。2008。篩選經非洲爪蟾卵之萃取物處理後具分化多能性之細胞。碩士論文。中興大學動物科學系。 林子安。2006。供核體細胞胞膜完整性對核轉置豬胚體外發育之影響。碩士論文。中興大學畜產學系。 謝賢修。2007。利用嵌合小鼠模式探討重新表現Oct–4與Nanog之3T3纖維母細胞分化多能性。碩士論文。中興大學動物科學系。 Adam, S. A., R. Sterne–Marr and L. Gerace. 1992. Nuclear protein import using digitonin–permeabilized cells. Methods. Enzymol. 219:97–110. Avilion, A. A., S. K. Nicolis, L. H. Pevny, L. Perez, N. Vivian and R. L. Badge. 2003. Multipotent cell lineages in early mouse development depend on SOX2 function. Genes. Dev. 17:126–140. Baguisi, A., E. Behboodi, D.T. Melican, J. S. Pollock, M. M. Destrempes, C. Cammuso, J. L. Williams, S. D. Nims, C. A. Porter, P. Midura, M. J. Palacios, S. L. Ayres, R. S. Denniston, M. L. Hayes, C. A. Ziomek, H. M. Meade, R. A. Godke, W. G. Gavin, E. W. Overstrom and Y. Echelard. 1999. Production of goats by somatic cell nuclear transfer. Nat. Biotech. 17:456–461. Bao, S., N. Miyoshi, I. Okamoto, T. Jenuwein, E. Heard and M. S. Azim. 2005. Initiation of epigenetic reprogramming of the X chromosome in somatic nuclei transplanted to a mouse oocyte. EMBO. Rep. 6:748–754. Barnes, F., P. Collas, R. Powell, W. King, M. Westhusin and D. Shepherd. 1993. Influence of recipient oocyte cell cycle stage on DNA synthesis nuclear envelope breakdown, chromosome constitution, and development in nuclear transfer bovine embryos. Mol. Reprod. Dev. 36:33–41. Berg, D. K., C. Li, G. Asher, D. N. Wells and B. Oback. 2007. Red deer cloned from antler stem cells and their differentiated progeny. Biol. Reprod. 3:384–394. Betthauser, J. M., M. Pfister–Genskow, H. Xu, P. J. Golueke, J.C Lacson, R. W. Koppang, C. Myers, B. Liu, I. Hoeschele, K. J. Eilertsen and G. H. Leno. 2006. Nucleoplasmin facilitates reprogramming and in vivo development of bovine nuclear transfer embryos. Mol. Reprod. Dev. 73:977–986. Biggers, J. D., L. K. McGinnis and M. Raffin. 2000. Amino acids and preimplantation development of the mouse in protein–free potassium simplex optimized medium. Biol. Reprod. 63:281–293. Bochar, D. A., L. Wang, H. Beniya, A. Kinev, Y. Xue, W. S. Lane, W. Wang, F. Kashanchi and R. Shiekhattar. 2000. BRCA1 is associated with a human SWI/SNF–related complex: linking chromatin remodeling to breast cancer. Cell 102:257–265. Boiani, M., L. Gentile, V. V. Gambles, F. Cavaleri, C. A. Redi, and H. R. Schöler. 2005. Variable Reprogramming of the Pluripotent Stem Cell Marker Oct4 in Mouse Clones: Distinct Developmental Potentials in Different Culture Environments. Stem Cells 23:1089–1104. Boiani, M., S. Eckardt, H. R. Scholer and K. J. McLaughlin. 2002. Oct4 distribution and level in mouse clones: consequences for pluripotency. Genes. Dev. 16:1209–1219. Boiani, M., S. Eckardt, H. R. Scholer and K. L. McLaughlin. 2002. Oct4 distribution and level in mouse clones: consequences for pluripotency. Genes Dev. 16:1209–1219. Bortvin, A., K. Eggan, H. Skaletsky, H. Akutsu, D. L. Berry, R. Yanagimachi,D. C. Page and R. Jaenisch. 2003. Incomplete reactivation of Oct4–related genes in mouse embryos cloned from somatic nuclei. Development 130:1673–1680. Byrne, J. A, S. Simonsson, P. S. Western and J. B. Gurdon. 2003. Nuclei of adult mammalian somatic cells are directly reprogrammed to oct–4 stem cell gene expression by amphibian oocytes. Curr. Biol. 13:1206–1213. Byrne, J. A., D. A. Pedersen, L. L. Clepper, M. Nelson, W. G. Sanger, S. Gokhale , D. P. Wolf and S. M. Mitalipov. 2007. Producing primate embryonic stem cells by somatic cell nuclear transfer. Nature 450: 497–505. Byrne, J. A., S. Simonsson, P. S. Western and J. B. Gurdon. 2003. Nuclei of adult mammalian somatic cells are directly reprogrammed to oct–4 stem cell gene expression by amphibian oocytes. Curr. Biol. 13:1206–1213. Campbell, K., J. McWhir, W. Ritchie and I. Wilmut. 1996a. Sheep cloned by nuclear transfer from a cultured cell line. Nature 380:64–66. Carroll, J., K. T. Jones and D. G. Whittingham. 1996. Ca2+ release and the development of Ca2+ release mechanisms during oocyte maturation: a prelude to fertilization. Rev. Reprod. 1:137–143. Chatot, C. L., C. A. Ziomek, B. D. Bavister, J. L. Lewis and I. Torres. 1989. An improved culture medium supports development of random–bred one cell mouse embryos in vitro. J. Reprod. Fertil. ; 86:679–688. Cheong, H. T., Y. Takahashi and H. Kanagawa. 1993. Birth of mice after transplantation of early cell–cycle–stage embryonic nuclei into enucleated oocytes. Biol .Reprod. 48:958–963. Cheong, H., Y. Takahashi and H. Kanagawa. 1993. Birth of mice after transplantation of early cell–cyclestage embryonic nuclei into enucleated oocytes. Biol. Reprod. 48:958–963. Chesne, P., P. G. Adenot, C. Vigilietta, M. Baratt, L. Boulanger and J. Renard. 2002. Cloned rabbits produced by nuclear transfer from adult somatic cells. Nat. Biotech. 20:366–369. Chi, M. M., J. K. Manchester, V. C. Yang, A. D. Curato, R. C. Strickler and O. H. Lowry. 1988. Contrast in levels of metabolic enzymes in human and mouse ova. Biol. Reprod. 39:295–307. Chung, Y. G., M. R. Mann, M. S. Bartolomei and K.E. Latham. 2002. Nuclear cytoplasmic ‘‘tug of war’’ during cloning: Effects of somatic cell nuclei on culture medium preferences of preimplantation cloned mouse embryos. Biol. Reprod. 66:1178–1184. Chung, Y. G., M. R. W. Mann, M. S. Bartolomei, and K. E. Latham. 2002. Nuclear–cytoplasmic ‘‘tug of war’’ during cloning: effects of somatic cell nuclei on culture medium preferences of preimplantation cloned mouse embryos. Biol. Reprod. 66:1178–1184. Cibelli, J. B., K. H. Campbell, G. E. Seidel, M. D. West and R. P. Lanza. 2002. The health profile of cloned animals. Nat. Biotechnol. 20:13–14. Dean, W., F. Santos, M. Stojkovic, V. Zakhartchenko, J. Walter, E. Wolf and W. Reik. 2001. Conversation of methylation reprogramming in mammalian development: aberrant reprogramming in cloned embryos. Proc. Natl. Acad. Sci. USA. 98:13724–13738. Delhaise, F., F. J. Ectors, R. De Roover, F. Ectors and F. Dessy. 1995. Nuclear transplantation using bovine primordial germ cells from male fetuses. Reprod. Fertil. Dev. 7:1217–1219. DiBerardino, M. and N. Hoffner. 1970. Origin of chromosomal abnormalities in nuclear transplants – a reevaluation of nuclear differentiation and nuclear equivalence in amphibians. Dev. Biol. 23:185–209. Doherty, A. S., M. R. W. Mann, K. D. Tremblay, M. S. Bartolomei and R. M. Schultz. 2000. Differential effects of culture on imprinted H19 expression in the preimplantation mouse embryo. Biol. Reprod. 62:1526–1535. Dominko, T., A. Chan, C. Simerly, C. M. Luetjens, L. Hewitson, C. Martinovich and G. Schatten. 2000. Dynamic imaging of the metaphase II spindle and maternal chromosomesin bovine oocytes:implications for enucleation efficiency verification, avoidanceof parthenogenesis, and successful embryogenesis. Biol. Reprod. 62:150–154. Eggan, K., H. Akutsu, J. Loring, L. Jackson–Grusby, M. Klemm, W. M. III Rideout, R. Yanagimachi and R. Jaenisch. 2001. Hybrid vigor, fetal overgrowth, and viability of mice derived by nuclear cloning and tetraploid embryo complementation. Proc. Natl. Acad. Sci. USA. 98:6209–6214. Eggan. K., A. Rode, I. Jentsch, C. Samuel, T. Hennek, H. Tintrup, B. Zevnik, J. Erwin, J. Loring, L. Jackson–Grusby, M. R. Speicher, R. Kuehn and R. Jaenisch. 2002. Male and female mice derived from the same embryonic stem cell clone by tetraploid embryo complementation. Nat. Biotechnol. 20:455–459. Eggan. K., H. Akutsu, K. Hochedlinger, W. III Rideout, R. Yanagimachi and R. Jaenisch. 2000. X–Chromosome inactivation in cloned mouse embryos. Science 290:1578–1581. Egli, D., J. Rosains, G. Birkhoff and K. Eggan. 2007. Developmental reprogramming after chromosome transfer into mitotic mouse zygotes. Nat. 447:679–685. Exley, G. E., C. Tang, A. S. McElhinny and C. M. Warner. 1999. Expression of caspase and BCL–2 apoptotic family members in mouse preimplantation embryos. Biol. Reprod. 61:231–239. Fisher, P. 1987. Disassembly and reassembly of nuclei in cell free systems. Cell 48:175–176. Fisher, R. A. 1935. The design of experiments. Oliver and Boyd, Edinburgh. Flaus, A. and T. Owen–Hughes. 2001. Mechanisms for ATP–dependent chromatin remodelling. Curr. Opin. Genet. Dev. 11:148–154. Fraser, L. R. 1979 Rate of fertilization in vitro and subsequent nuclear development as a function of the post–ovulatory age of the mouse egg. J. Reprod. Fertil. 55:153–160. Galli, C., I. Lagutina, G. Crotti, S. Colleoni, P. Turini, N. Poderato, R. Duchi and G. Lazzari 2003. A cloned horse born to its dam twin. Nature 424:635. Gao, S., E. Czirr, Y. G. Chung, Z. Han, and K. E. Latham. 2004. Genetic Variation in oocyte phenotype revealed through parthenogenesis and cloning: correlation with differences in pronuclear epigenetic modification. Biol. Reprod. 70:1162–1170. Gao, S., M. Mcgarry, H. Priddle, T. Ferrier, B. Gasparrini, J.Y. Fletcher, L. Harnekss, P. D. Sousa, J. Mcwhir, and I. Wilmut. 2003a. Effects of donor oocytes and culture conditions on development of cloned mice embryos. Mol. Reprod. Dev. 66:126–133. Gao, S., M. McGarry, T. Ferrier, B. Pallante, H. Priddle, B. Gasparrini, J. Fletcher, L. Harkness, P. De Sousa, J. McWhir and I. Wilmut. 2003b. Effect of cell confluence on production of cloned mice using an inbred embryonic stem cell line. Biol. Reprod. 68:595–603. Gao, S., Y. G. Chung, J. W. Williams, J. Riley, K. Moley, and K. E. Latham. 2003c. somatic cell–like features of cloned mouse embryos prepared with cultured myoblast nuclei. Biol. Reprod. 69:48–56. Gao, S., Y. G. Chung, M. H. Parseghian, G. J. King, E. Adashi and K. E. Latham. 2004. Rapid H1 linker histone transitions following fertilization or somatic cell nuclear transfer: evidence for a uniform developmental program in mice. Dev. Biol. 266:62–75. Golstein, P. 1998. Cell death in us and others. Science 281:1283. Gonda, K., J. Fowler, N. Katoku–Kikyo, J. Haroldson, J. Wudel and N. Kikyo.2003. Reversible disassembly of somatic nucleoli by the germ cell proteins FRGY2a and FRGY2b. Nat. Cell Biol. 5:205–210. Gordo, A. C., H. Wu, C. L. He and R. A. Fissore. 2000. Injection of sperm cytosolic factor mouse metaphase II oocytes induces different developmental fates according to the frequency of [Ca21]i oscillations and oocyte age. Biol. Reprod. 62:1370–1379. Gordo, A. C., P. Rodrigues, M. Kurokawa and T. Jellerette, G. E. Exley, C. Warner and R. Fissore. 2002. Intracellular calcium oscillations signal apoptosis rather than activation in in vitro aged mouse eggs. Biol. Reprod. 66: 1828–1837. Green, D. R. and J. C. Reed. 1998. Mitochondria and apoptosis. Science 281: 1309–1312. Gurdon, J. B. 1962. Adult frogs derived from the nuclei of single somatic cell Dev. Biol. 4: 256–273. Gurdon, J. B. 1986. Nuclear transplantation in eggs and oocytes. J. Cell Sci. Suppl. 4:287–318. Gurdon, J. B. and J. A. Byrne. 2003. The first half–century of nuclear transplantation. Proc. Natl Acad. Sci. USA 100:8048–8052. Gurdon, J. B. and J. A. Byrne. 2003. The first half–century of nuclear transplantation. Proc. Natl. Acad. Sci. USA. 100:8048–8052. Gurdon, J. B., R. A. Laskey, E. M. De Robertis and G. A. Partington. 1979. Reprogramming of transplanted nuclei in amphibia. Int. Rev. Cytol. Suppl. 9:161–178. Gurdon, J.B. 1962. The developmental capacity of nuclei taken from intestinal epithelium cells of feeding tadpoles. J. Embryol. Exp. Morph. 10:622–640. Hansis, C., G. Barreto, N. Maltry and C. Niehrs. 2004. Nuclear reprogramming of human somatic cells by xenopus egg extract requires BRG1. Curr. Biol. 14:1475–1480. Hansis, C., J. A. Grifo and L. C. Krey. 2000. Oct–4 expression in inner cell mass and trophectoderm of human blastocysts. Mol. Hum. Reprod. 6:999–1004. Hatano, S., M. Tada, H. Kimura, S. Yamaguchi, T. Kono, T. Nakano, H. Suemori, N. Nakatsuji and T. Tada. 2005. Pluripotential competence of cells associated with Nanog activity. Mech. Dev. 122: 12267–12279. Hattori, N., K. Nishino, Y. Ko, N. Hattori, J. Ohgane, S. Tanaka and K. Shiota. 2004. Epigenetic control of mouse Oct–4 gene expression in embryonic stem cells and trophoblast stem cells, J. Biol. Chem. 279:17063–17069. Heiden, M. G. snd C. B. Thompson. 1999. Bcl–2 proteins: regulators of apoptosis or of mitochondrial homeostasis. Nat. Cell Biol. 1:209–216 Hiiragi, T.and D. Solter. 2005. Reprogramming is essential in nuclear transfer. Mol. Reprod. Dev. 70:417–421. Ho, Y., K. Wigglesworth, J. J. Eppig and R. M. Schultz. 1995 Preimplantation developmentof mouse embryos in KSOM: augmentation by amino acids and analysis of gene expression. Mol. Reprod. Dev. 41:232–238. Hochedlinger, K. and R. Jaenisch. 2002. Monoclonal mice generated by nuclear transfer from mature B and T donor cells. Nature 415:1035–1038. Howlett, S. K., S. C. Barton and M. A. Surani. 1987. Nuclear cytoplasmic interactions following nuclear transplantation in mouse embryos. Development 101:915–923. Huang, J. C., L. Y. Yan, Z. L. Lei, Y. L. Miao, L. H. Shi, J. W. Yang, Q. Wang, Y. C. Ouyang, Q. Y. Sun and D. Y. Chen. 2007. Changes in Histone Acetylation During Postovulatory Aging of Mouse Oocyte. Biol. Reprod. 77:666–670. Humpherys. D., K. Eggan, H. Akutsu, K. Hochedlinger, W. M. III Rideout, D. Biniszkiewicz, R. Yanagimachi and R. Jaenisch. 2001. Epigenetic instability in ES cells and cloned mice. Science 293:95–97. Illmensee, K. and P. Hoppe. Nuclear transplantation in Mus musculus: developmental potential of nuclei from preimplantation embryos. Cell 23:9–18. Inoue, K., H. Wakao, N. Ogonuki, H. Miki, K. Seino, R. Nambu–Wakao, S. Noda, H. Miyoshi, H. Koseki, M. Taniguchi and A. Ogura. 2005. Generation of cloned mice by direct nuclear transfer from natural killer T cells. Curr. Biol. 15:1114–1118. Inoue, K., N. Ogonuki, K. Mochida, Y. Yamamoto, K. Takano, T. Kohda, F. Ishino and A. Ogura. 2003.Effects of donor cell type and genotype on the efficiency of mouse somatic cell cloning. Biol. Reprod. 69:1394–1400. Jacobson, M. D., M. Weil and M. C. Raff. 1997. Programmed cell death in animal development. Cell 88:347–354. Jaenisch. R., K. Eggan, D. Humpherys, W. M. III Rideout and K. Hochedlinger. 2002. Nuclear cloning, stem cells, and genomic reprogramming. Cloning Stem Cells 4:389–396. Jouneau, A. and J. P. Renard. 2003. Reprogramming in nuclear transfer. Curr. Opin. Genet. Dev. 13:486–491. Jouneau1, A., Q. Zhou1, A. Camus, V. Brochard, L. Maulny1, J. Collignon and J. P. Renard1. 2006. Developmental abnormalities of NT mouse embryos appear early after implantation. Development 133:1597–1607. Kato, Y., T. Tani, Y. Sotomaru, K. Kurokawa, J. Kato, H. Doguchi, H. Yasue and Y. Tsunoda. 1998. Eight calves cloned from somatic cells of a single adult. Science 282:2095–2098. Kato, Y., W. Rideout, K. Hilton, S. Barton, Y. Tsunoda and M. Surani. 1999. Developmental potential of mouse primordial germ cells. Development 126:1823–1832. Kawase, Y., T. Iwata , M. Watanabe , N. Kamada , O. Ueda and H. Suzuki. 2001. Application of the piezo–micromanipulator for injection of embryonic stem cells into mouse blastocysts. Contemp. Top. Lab. Anim. Sci. 40:31–34. Kerr, J. F., C. M. Winterford and B. V. Harmon. 1994. Morphological criteria for identifying apoptosis. In: Celis JE (eds.), Cell Biology: A Laboratory Handbook. San Diego: Academic Press 319–329. Khosla, S., W. Dean, D. Brown, W. Reik and R. Feil. 2001. Culture of preimplantation mouse embryos affects fetal development and the expression of imprinted genes. Biol. Reprod. 64:918–926. Kikyo, N., P. A. Wade, D. Guschin, H. Ge and A. P. Wolffe. 2000. Active remodeling of somatic nuclei in egg cytoplasm by the nucleosomal ATPase ISWI. Science 289:2360–2362. Kikyo, N., P. A. Wade, D. Guschin, H. Ge and A. P. Wolffe. 2000. Active remodeling of somatic nuclei in egg cytoplasm by the nucleosomal ATPase ISWI. Science. 289:2360–2362. Kim, J. M., A. Ogura, M. Nagata and F. Aoki. 2002. Analysis of the mechanism for chromatin remodeling in embryos reconstructed by somatic cell nuclear transfer. Biol. Reprod. 67:760–776. Kim, M. K., G. Jang, H. J. Oh, F. Yuda, H. J. Kim, W. S. Hwang, M. S. Hossein, J. J. Kim, N. S. Shin, S. K. Kang, B. C. Lee. 2007. Endangered Wolves Cloned from Adult Somatic Cells. Cloning Stem Cells 1: 130–137. Kimur, Y. and R. Yanagimachi. 1995. Intracutoplasmic sperm injection in the mouse. Biol. Reprod. 52:709–720. King, T. 1966. Nuclear transplantation in amphibia. Meth. Cell Physiol. 2:1–36. Kingsbury, M. A., B. Friedman, M. J. McConnell, S. K. Rehen, A. H. Yang, D. Kaushal and J. Chun. 2005. Aneuploid neurons are functionally active and integrated into brain circuitry. Proc. Natl. Acad. Sci. USA. 102:6143–6147. Kishigami, S., E. Mizutani, H. Ohta, T. Hikichi, N. V. Thuan, S. Wakayama, H. T. Bui and T. Wakayama. 2006. Significant improvement of mouse cloning technique by treatment with trichostatin A after somatic nuclear transfer. Biochem. Biophys. Res. Commun. 340:183–189. Kishigami1. S., S Wakayama1, N. V. Thuan, H. Ohta, E. Mizutani, T. Hikichi, H. T. Bui, S. Balbach, A. Ogura, M. Boiani and T. Wakayama. 2006.Production of cloned mice by somatic cell nuclear transfer. Nat. Prot. 1: 125–138. Kishikawa, H., T. Wakayama and R. Yanagimachi.1999. Comparison of oocyte–activating agents for mouse cloning. cloning 1:153–159. Kline, D. and J. T. Kline. 1992. Repetitive calcium transients and the role of calcium in exocytosis and cell cycle activation in the mouse egg. Dev. Biol. 149:80–89. Klochendler–Yeivin, A., C. Muchardt and M. Yaniv. 2002. SWI/SNF chromatin remodeling and cancer. Curr. Opin. Genet. Dev. 12:73–79. Kluck, R. M.. E. Bossy–Wetzel, D. R. Green and D. D. Newmeyer. 1997. The release of cytochrome c from mitochondria: a primary site for Bcl–2 regulation of apoptosis. Science 275:1132–1136. Kobayashi, T., Y. Kato and Y. Tsunoda. 2004. Effect of the timing of the first cleavage on the developmental potential of nuclear–transferred mouse oocytes receiving embryonic stem cells. Theriogenology 62:854–860. Koziol, M. J., N. Garrett and J. B. Gurdon. 2007. Tpt1 activates transcription of oct4 and nanog in transplanted somatic nuclei. Curr. Biol. 17:801–807. Kwon, O. Y. and T. Kono. 1996. Production of identical sextuplet mice by transferring metaphase nuclei from four–cell embryos. Proc. Natl. Acad. Sci. USA. 93:13010–13013. Lanman, J. T. 1968. Delays during reproduction and their effects on the embryo and fetus. 2. Aging of eggs. N. Engl. J. Med. 278:1047–1054. Lavoir, M., N. Rumph, A. Moens, W. King, Y. Plante, W. Johnson, J. Ding and K. Betteridge.1997. Development of bovine nuclear transfer embryos made with oogonia. Biol. Reprod. 57:204–213. Lee, B. C., M. K. Kim, G. Jang, H. J. Oh, F. Yuda, H. J. Kim, M. H. Shamim, J. J. Kim, S. K. Kang, G. Schatten and W. S. Hwang. 2005. Dogs cloned from adult somatic cells. Nature 436:641. Lee, C. and J. Piedrahita. 2002. Inhibition of apoptosis in serum starved porcine embryonic fibroblasts. Mol. Reprod. Dev. 62:106–112. Leno, G. H. 1998. Cell–free systems to study chromatin remodeling. Methods. Cell Biol. 53:497–515. Lewis, W. H. and E. S. Wright. 1935. On the early development of the mosue egg. Carnegie. Inst. Contrib. Embryol. 25:113–143. Ludwig, T.E., M. Lane and B. D. 2001. Bavister. Differential effect of hexoses on hamster embryo development in culture. Biol. Reprod. 64:1366–1374. Mailhes, J. B., D. Young and S. N. London. 1998. Postovulatory ageing of mouse oocytes in vivo and premature centromere separation and aneuploidy. Biol. Reprod. 58:1206–1210. Makino, H., Y. Yamazaki, T. Hirabayashi, R. Kaneko, S. Hamada, Y. Kawamura, Osada T, R. Yanagimachi, T. Yagi. 2005. Mouse embryos and chimera cloned from neural cells in the postnatal cerebral cortex. Cloning Stem Cells 7:45–61. Mann, M. R., Y. G. Chung, L. D. Nolen, R. I. Verona, K. E. Latham and M. S. Bartolomei. 2003. Disruption of imprinted gene methylation and expression in cloned preimplantation stage mouse embryos. Biol. Reprod. 69:902–914. Marston, J. H. and M. C. Chang. 1964. The Fertilizable Life of Ova and Their Morphology Following Delayed Insemination in Mature and Immature Mice. J. Exp. Zool. 155:237–251. McGrath J. and D. Solter. 1983. Nuclear transplantation in the mouse embryo by microsurgery and cell fusion. Science 220:1300–1302. McGrath, J. and D. Solter. 1984. Inability of mouse blastomere nuclei transferred to enucleated zygotes to support development in vitro. Science 226:1317–1319. McGrath, J. and D. Solter. 1986. Nucleocytoplasmic interactions in the mouse embryo. Embryol. Exp. Morphol. 97:277–289. Meng, L., J. J. Ely, R. L. Stouffer and D. P. Wolf. 1997. Rhesus monkeys produced by nuclear transfer. Biol. Reprod. 57:454–459. Miao, Y. L., X. Y. Liu, T. W. Qiao, D. Q. Miao, M. J. Luo and J. H. Tan. 2005. Cumulus cells accelerate aging of mouse oocytes. Biol. Reprod. 73, 1025–1031 Miki, H., K. Inoue, N. Ogonuki, K. Mochida, H. Nagashima, T. Baba and A. Ogura . 2004. Cytoplasmic asters are required for progression past the first cell cycle in cloned mouse embryos. Biol. Reprod. 71:2022–2028. Miki, H., K. Inoue, T. Kohda, A. Honda, N. Ogonuki, M. Yuzuriha, N. Mise, Y. Matsui, T. Baba, K. Abe, F. Ishino and A. Ogura. 2005. Birth of mice produced by germ cell nuclear transfer. Genesis 41:81–86. Mitalipov, S. M., K. L. White, V. R. Farrar, J. Morrey and W. A. Reed. 1999. Development of nuclear transfer and parthenogenetic rabbit embryos activated with inositol 1,4,5–trisphosphate. Biol. Reprod. 60:821–827. Miyamoto, K., T. Furusawa, M. Ohnuki, S. Goel, T. Tokunaga, N. Minami, M. Yamada, K, Ohsumi and H. Imail. 2007. Reprogramming events of mammalian somatic cells induced by xenopus laevis egg extracts. Mol. Reprod. Dev. 74:1268–1277. Miyawaki, A., T. Furuichi, N. Maeda and K. Mikoshiba. 1990. Expressed cerebellar–type inositol 1,4,5–trisphosphate receptor, P400, has calcium release activity in a fibroblast L cell line. Neuron 5:11–18. Miyazaki, S., H. Shirakawa, K. Nakada and Y. Honda. 1993. Essential role of the inositol 1,4,5–trisphosphate receptor/Ca2+ release channel in Ca2+ waves and Ca2+ oscillations at fertilization of mammalian eggs. Dev. Biol. 158:62–78. Modlinski, J. A., J. P. Ozil, M. K. Modlinska, A. Szarska, M. A. Reed, T. E. Wagner and J. Karasiewicz. 2002. Development of single mouse blastomeres enlarged to zygote size in conditions of nucleo–cytoplasmic synchrony. Zygote 10:283–290. Moens, A., S. Chastant, P. Chesné, J. Flechon, K. Betteridge and J. Renard. 1996. Differential ability of male and female rabbit fetal germ cell nuclei to be reprogrammed by nuclear transfer. Differentiation 60:339–345. Moreira, P. N., R. Fern’andez–Gonzalez, M. A. Ramirez, M. P’erez–Crespo, D. Rizos, B. Pintado, and A. Guti’errez–Ad’an. 2006. Differential effects of culture and nuclear transfer on relative transcript levels of genes with key roles during preimplantation. Zygote 14:81–87. Morita, Y. and J. L. Tilly. 1999. Oocyte apoptosis: like sand through an hourglass. Dev. Biol. 213:1–17. Newport, J. and M. Kirschner. 1984. Regulation of the cell cycle during early Xenopus development. Cell 37:731–742. Nolen, L. D., S. Gao, Z. Han, M. R. Mann, Y. G. Chung, A. P. Otte AP, M. S. Bartolomei and K. E. Latham. 2005. X chromosome reactivation and regulation in cloned embryos. Dev. Biol. 279:525–540. Oback, B. and D. Wells. 2002. Practical aspects of donor cell selection for nuclear cloning. Cloning Stem Cells 4:169–175. Ohgane, J., T. Wakayama, S. Senda, Y. Yamazaki, K. Inoue, A. Ogura, J. Marh, S. Tanaka, R. Yanagimachi and K. Shiota. 2004. The Sall3 locus is an epigenetic hotspot of aberrant DNA methylation associated with placentomegaly of cloned mice. Genes. Cells. 9:253–260. Onishi, A., M. Iwamoto, T. Akita, S. Mikawa, K. Takeda, T. Awata, H. Hanada and A. C. F. Perry. 2000. Pig cloning by microinjection of fetal fibroblast nuclei. Science 289:1188–1190. Ono, Y. and T. Kono. 2006. Irreversible barrier to the reprogramming of donor cells in cloning with mouse embryos and embryonic stem cells. Biol. Reprod. 75:210–216. Ono, Y., N. Shimozawa, M. Ito and T. Kono. 2001. Cloned mice from fetal fibroblast cells arrested at metaphase by a serial nuclear transfer. Biol. Reprod. 64:44–50. Osada, T., H. Kusakabe, H. Akutsu, T. Yagi and R. Yanagimachi. 2002. Adult murine neurons: Their chromatin and chromosome changes and failure to support embryonic development as revealed by nuclear transfer. Cytogenet Genome Res 97:7–12. Perez, G. I., A. Jurisicova, T. Matikainen, T. Moriyama, M. R. Kim, Y. Takai, J K. Pru, R. N. Kolesnick and J. L. Tilly. 2005. A central role for ceramide in the age–related acceleration of apoptosis in the female germline. FASEB. J. 19:860–862. Perez, G. I., X. J. Tao and J. L. Tilly. 1999. Fragmentation and death (a.k.a. apoptosis) of ovulated oocytes. Mol. Hum. Reprod. 5:414–420. Polejaeva, I., S. Chen, T. Vaught, R. Page, J. Mullins, S. Ball, Y. Dai, J. Boone, S. Walker, D. Ayares, A. Colman and K. Campbell. 2000. Cloned pigs produced by nuclear transfer from adult somatic cells. Nature 407:86–90. Poueymirou, W.T., J. C. Conover, R. M. Schultz. 1989. Regulation of mouse preimplantation development: differential effects of CZB medium and Whitten’s medium on rates of protein synthesis in 2–cell embryos. Biol. Reprod. 41:317–322. Prather, R. S., F. L. Barnes, M. M. Sims, J. M. Robl, W. Eyestone and N. First. 1987. Nuclear transfer in the bovine embryo: assessment of donor nuclei and recipient oocyte. Biol. Reprod. 37: 859–866. Prather, R. S., M.M. Sims and N. L. First. 1989. Nuclear transplantation in early pig embryos. Biol. Reprod. 41:414–418. Prather, R., M. Sims and N. First. 1990. Nuclear transplantation in the pig embryo: nuclear swelling. J. Exp. Zool. 255:355–358. Prelle, K., I. Vassiliev, S. Vassilieva, E. Wolf and A. Wobus. 1999. Establishment of pluripotent cell lines from vertebrate species – present status and future prospects. Cells Tissues Organs. 165:220–236. Rathmell, J. C. and C. B. Thompson. 1999. The central effectors of cell death in the immune system. Annu. Rev. Immunol. 17:781–828. Rideout, W. M. III., T. Wakayama, A. Wutz, K. Eggan, L. J. Grusby, J. Dausman, R. Yanagimachi and R. Jaenisch. 2000. Generation of mice from wild–type and targeted ES cells by nuclear cloning. Nat. Genet. 24:109–110. Robl, J., B. Gilligan, E. Critser and N. First. 1986. Nuclear transplantation in mouse embryos: assessment of recipient cell stage. Biol. Reprod. 34 733–739. Sakai, N. and A. Endo. 1988. Effects of delayed mating on preimplantation embryos in spontaneously ovulated mice. Gamete. Res. 19:381–385. Santalo, J., J. Badenas, J. M. Calafell, V. Catala, S. Munne, J. Egozcue and A. M. Estop. 1992. The genetic risks of in vitro fertilization techniques: the use of an animal model. J. Assist. Reprod. Genet. 9:462–474. Scholer, H. R., S. Ruppert, N. Suzuki, K. Chowdhiry and P.Gruss. 1990. New type of POU domain in germ line–specific protein Oct4. Nature 344:435–439. Schurmann, A., D. N. Wells, and B. Oback. 2006. Early zygotes are suitable recipients for bovine somatic nuclear transfer and result in cloned offspring. Reproduction 132:839–848. Shi, W. and T. Haaf. 2002. Aberrant methylation patterns at the two–cell stage as an indicator of early developmental failure. Mol. Reprod. Dev. 63:329–334. Shim, H., A. Gutierrez–Adán, L. Chen, R. BonDurant, E. Behboodi and G. Anderson. 1997. Isolation of pluripotent stem cells from cultured porcine primordial germ cells. Biol. Reprod. 57:1089–1095. Shin, T., D. Kraemer, J. Pryor, L. Liu, J. Rugila, L. Howe, S. Buck, K. Murphy, L. Lyons and M. Westhusin. 2002. A cat cloned by nuclear transplantation. Nature 415:859. Shoukhrat, M. M., C. K. Hung, J. D. Hennebold and D. P. Wolf. 2003. Oct4 expression in pluripotent cells of the Rhesus Monkey. Biol. Reprod. 69: 1785–1792. Sims, M. and N. L. First. 1994. Production of calves by transfer of nuclei from cultured inner cell mass cells. Proc. Natl. Acad. Sci. U S A. 91:6143–6147. Smith, L. and I. Wilmut. 1989. Influence of nuclear and cytoplasmic activity on the development in vivo of sheep embryos after nuclear transplantation. Biol. Reprod. 40:1027–1035. Stice, S. L. and J. M. Robl. 1988. Nuclear reprogramming in nuclear transplant rabbit embryos. Biol. Reprod. 39:657–664. Sung L. Y., S. Gao1, H. Shen, H. Yu, Y. Song, S. L. Smith1, C. C. Chang, K. Inoue1, L. Kuo, J. Lian, A. Li, X. C. Tian, D. P. Tuck, S. M. Weissman, X. Yang amd T. Cheng. 2006. Differentiated cells are more efficient than adult stem cells for cloning by somatic cell nuclear transfer. Nat. Genet. 38:1323–1328. Szöllösi, D., R Czolowska, M. S. Soltynska, A.K. Tarkowski. 1986. Remodelling of thymocyte nuclei in activated mouse oocytes: an ultrastructural study. Eur. J. Cell Biol. 1:140–151. Szöllösi, D., R. Czolowska, M. Szöllösia and A. Tarkowski. 1988. Remodeling of mouse thymocyte nuclei depends on the time of their transfer into activated, homologous oocytes. J. Cell Sci. 91:603–613. Szollosi, M. and D. Szöllösi. 1988. Blebbing of the nuclear envelope of mouse zygotes, early embryos and hybrid cells. J. Cell Sci. 91:257–267. Tabar, V., M. Tomishima, G. Panagiotakos, S. Wakayama, J. Menon1, B. Chan1, E. Mizutani, G. Al–Shamy, H. Ohta, T. Wakayama and L. Studer. 2008. Therapeutic cloning in individual parkinsonian mice. Nat. Med. 14:379–381. Tamashiro, K. L., T. Wakayama, H. Akutsu, Y. Yamazaki, J. L. Lachey,M. D. Wortman, R. J. Seeley, D. A. D’Alessio, S. C. Woods, R. Yanagimachi and R. R. Sakai. 2002. Cloned mice have an obese phenotype not transmitted to their offspring. Nat. Med. 8:262–267. Tani, T., Y. Kato and Y. Tsunoda. 2001. Direct exposure of chromosomes to nonactivated ovum cytoplasm is effective for bovine somatic cell nucleus reprogramming. Biol. Reprod. 64:324–330. Taniguchi, M., M. Harada, S. Kojo, T. Nakayama and H. Wakao. 2003. The regulatory role of Valpha14 NKT cells in innate and acquired immune response. Annu. Rev. Immunol. 21:483–513. Tarin, J. J., S. Perez–Albala and A. Cano. 2000. Consequences on offspring of abnormal function in ageing gametes. Hum. Reprod. Update. 6:532–549. Tarin, J. J., S. Perez–Albala, A. Aguilar, J. Minarro, C. Hermenegildo and A. Cano. 1999. Long–term effects of postovulatory aging of mouse oocytes on offspring: a two–generational study. Biol. Reprod. 61:1347– 1355. Tarin, J. J., S. Perez–Albala and A. Cano. 2001. Cellular and morphological traits of oocytes retrieved from aging mice after exogenous ovarian stimulation. Biol Reprod. 65:141–150. Thornberry, N. A. 1999. Caspases: a decade of death research. Cell Death. Differ. 6:1023–1027. Thornberry, N. A. and Y. Lazebnik. 1998. Caspases: enemies within. Science 281:1312–1316. Tsunoda, Y. and Y. Kato. 1993. Nuclear transplantation of embryonic stem cells in mice. J. Reprod. Fertil. 98:537–540. Tsunoda, Y., T. Yasui, Y. Shioda, K. Nakamura, T. Uchida and T. Sugie. 1987. Full term development of mouse blastomere nuclei transplanted into enucleated two–cell embryos. J. Exp. Zool. 242:147–151. Van, T. N., S. Wakayama, S. Kishigami and T. Wakayama. 2006. Donor Centrosome Regulation of initial spindle formation in mouse somatic cell nuclear transfer: roles of gamma–tubulin and nuclear mitotic apparatus protein 1. Biol. Reprod. 74:777–787. Wakayama, T. and R. Yanagimachi. 1998. Development of normal mice from oocytes injected with freeze–dried spermatozoa. Nature Biotechnol. 16:639–641. Wakayama, T. and R. Yanagimachi. 1999. Cloning of male mice from adult tail–tip cells. Nat. Genet. 22:127–128. Wakayama, T. and R. Yanagimachi. 1999. Cloning of male mice from adult tail–tip cells. Nat. Genet. 22:127–128. Wakayama, T. and R. Yanagimachi. 2001.Mouse cloningwith nucleus donor cells of different age and type. Mol. Reprod. Dev. 58:376–383. Wakayama, T., A. C. Perry, M. Zuccotti, K. R. Johnson, R. Yanagimachi. 1998. Full–term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature 394:369–374. Wakayama, T., D.G. Whittingham and R. Yanagimachi. 1998. Production of normal offspring from mouse oocytes injected with spermatozoa cryopreserved with or without cryoprotection. J. Reprod. Fertil. 112:11–17. Wakayama, T., H. Taeno, P. Mombaerts and R. Yanagimachi. 2000. Nuclear transfer into mouse zygotes. Nat. Genet. 24:108–109. Wakayama, T., I. Rodriguez, A. C. Perry, R. Yanagimachi, P. Mombaerts. 1999. Mice cloned from embryonic stem cells. Proc. Natl. Acad. Sci. USA. 96:14984–14989. Wakayama, T., V. Tabar, I. Rodriguez, A, C. Perry, L. Studer and P. Mombaerts .2001. Differentiation of embryonic stem cell lines generated from adult somatic cells by nuclear transfer. Science 292:740–743. Wakayama, T., V. Tabar, I. Rodriguez, A. C. Perry, L. Studer and P. Mombaerts. 2001. Differentiation of embryonic stem cell lines generated from adult somatic cells by nuclear transfer. Science 292:740–743. W
摘要: 
體細胞核轉置(somatic cell nuclear transfer, SCNT)技術所產製之重組胚(reconstructed embryos),除了可用於研究早期胚中細胞核與細胞質間之交互作用,探討基因功能、細胞分化與胚胎遺傳等相關之基礎研究外,亦可應用於臨床醫療使用,惟複製效率至今仍無法有效提高。本研究之目的為探討如何改善SCNT鼠胚產製與發育之效率。性成熟(2-3月齡)之B6D2F1(C57BL/6×DBA/2)小鼠經超級排卵(superovulation)處理後,於注射hCG後13.5 h收集停留於第二次減數分裂中期(metaphase II, MII)之成熟卵母細胞進行後續試驗。試驗一,為瞭解重組鼠胚最佳激活時間點,將於hCG注射後13.5 h收集之小鼠成熟卵母細胞,隨機分成三組,分別於收集後1.5、5.5及9.5 h,即hCG注射後15、19及23 h以氯化鍶(SrCl2)孤雌激活(parthenogenetic activation)。結果發現,hCG注射後15 h組其孤雌激活胚之發育率顯著高於19 h與23 h組者(85-94% vs. 20-76%, P < 0.001)。試驗二,嘗試利用非洲爪蟾(Xenopus)成熟卵子萃取物改善複製效率。將爪蟾卵萃取物與小鼠卵丘細胞(cumulus cells)同時注射入去核(enucleated)之成熟小鼠卵母細胞後,激活此重組胚(Extract組)並置於KSOM培養液中進行體外培養。結果顯示,重組胚各細胞期之發育率皆以注射爪蟾卵萃取物者顯著高於只注射卵丘細胞之對照組者(38-54% vs. 18-33%, P < 0.001)。另外,對照組與Extract組之產製胚於激活過程中添加5 nM Trichostatin A(TSA)6 h,經體外培養96 h後,將發育至囊胚期之複製胚分別移置至6隻以及3隻代理孕母子宮,並於懷孕第19.5天犧牲,其中,發現對照組一隻代理孕母子宮內有九個重吸收之胚胎。試驗三,為瞭解BRG1是否為爪蟾卵萃取物中影響複製胚發育之再程式化因子,將Extract-(已移除BRG1之爪蟾卵萃取物)與Extract+(未處理之爪蟾卵萃取物)分別與供核細胞共注射到去核卵母細胞中,並包含一組為單獨注射供核細胞之處理組(NT)與孤雌激活組(Parthenotes),觀察複製鼠胚後續的發育情形。結果顯示,Extract-組之原核率與早期胚分裂率(2-4-細胞期)均顯著高於Extract+組與NT組(79% vs. 45-60%; 72% vs. 35-53%, P < 0.05),而Extract+組之原核率與2-細胞期發育率亦顯著高於NT組(60% vs. 45%; 53% vs. 42%, P < 0.05),而雖然Extract-組之桑椹胚與囊胚率分別稍高於Extract+組與NT組(38% vs. 23-26%; 26% vs. 19-21%),但無顯著差異。將各處理組發育至囊胚期之鼠胚,以細胞免疫化學染色法分別分析Oct4,Sox2,Nanog與Cdx2 之表現,可見Sox2與Nanog於三組間之表現均散亂,惟Oct4於Extract+與Extract-處理組之表現較集中於在ICM之位置,顯示非洲爪蟾卵萃取物中具有調控複製鼠胚Oct4正常表現之因子。由以上試驗結果得知,使用老化之受核卵母細胞產製重組胚時,將降低重組胚後續發育能力,而成熟爪蟾卵萃取物中確實含有可提高重組鼠胚原核率與發育之因子,但其促進效率可能會受卵子萃取物萃取批次影響,因此需進行進一步之試驗以探討其成份與功能。

In addition to the applications for basic researches, such as studies of nuclear-cytoplasmic interactions in the early embryos, genetics and epigenesis, the somatic cell nuclear transfer (SCNT) embryos could be used in the clinical therapy. However, these applications are impeded by the low efficiency of production and development of SNCT embryos. Therefore, the aim of this study was to find the method or treatment to improve the efficiency of mouse SCNT. In Experiment 1, in order to find the optimal age of recipient oocytes, sexual mature (2 to 3 mouths old) B6D2F1 (C57BL/6×DBA/2) mice were superovulated and the metaphase II (MII) oocytes were collected 13.5 h after hCG injction, and randomly allocated into 3 groups, in which these MII oocytes were parthenogenetically activated by strontium chloride (SrCl2) at 15, 19 and 23 h after hCG injection, respectively and cultured in vitro. The results showed that the development of the parthenotes in the group of hCG 15 h was statistically superior to those in the groups of hCG 19 and hCG 23 h (85-94% vs. 20-76%, P < 0.001). In Experiment 2, the effect of mature egg extracts from Xenopus on the improvement of mouse SCNT was evaluated. The Xenopus egg extracts and one mouse cumulus cell were co-injected into the enucleated mouse oocyte. After activation, the reconstructed embryos were cultured in KSOM. It was observed the constant statistically higher development rates during the in vitro culture period in the egg extract-injected group compared to those in the none egg extract-injected (NT) group (38-54% vs. 18-33% , P < 0.001). In addition to in vitro culture, the reconstructed embryos from egg extract-injected and NT groups were treated with 5 nM Trichostatin A (TSA) while activation and transferred to uteri of pseudopregnant mice at the blastocyst stage after 96 h culture. Nine absorbed conceptuses were found in one out of nine foster mothers. In Experiment 3, BRG1 (brahma-related gene 1) contained in Xenopus egg extracts was examined the competence for reprogramming. Immunoprecipitation was applied to remove BRG1 from egg extracts, and Extract- (BRG1-depleted Xenopus egg extracts) and Extract+ (untreated Xenopus egg extracts) were with cumulus cells co-injected into the enucleated mouse oocyte, respectively. The results showed that the significantly higher pronucleus and early development rates in the Extract- group were observed during the in vitro culture period, compared with those in Extract+ and NT groups (79% vs. 45-60%; 72% vs. 35-53%, P < 0.05). Also, the formations of pronuclei and 2-cell embryos were significantly higher in Extract+ group than those in NT group (60% vs. 45%; 53% vs. 42%, P < 0.05). There was no significant differences in the formations of morula and blastocysts among these three groups, although it was higher in Extract- group (38% vs. 23-26%; 26% vs. 19-21%). The blastocyst from all groups were immunocytochemical stained to detect the expressions of Oct4,Sox2,Nanog and Cdx2. The scattered expressions of Sox2 and Nanog were found in the blastocysts derived from all three groups, but confined expression of Oct4 in ICM was observed in the blastocysts derived from Extract+ and Extract- groups, indicating factors regulating the expression of Oct4 might be contained in Xenopus egg extracts. Based on the present study, it is suggested that the aged recipient oocyte would hinder the development of cloned embryos. The factors enhancing pronuclear formation and development of cloned mouse embryos may be contained in the mature Xenopus egg extracts, but the efficiency could be influenced by collection batch. A further investigation of extract components and function is required.
URI: http://hdl.handle.net/11455/24918
其他識別: U0005-0502200914371900
Appears in Collections:動物科學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.