Please use this identifier to cite or link to this item:
標題: 任飼引發白肉種雞肥胖-相伴隨對心肌與骨骼肌功能之影響
Voluntary feeding induces obesity in broiler breeder hens - collateral effects on cardio- and skelato-muscular functions
作者: 陳中玉
Chen, Chung-Yu
關鍵字: Broiler breeder hens;白肉種雞;Obesity;Skeletal muscle;Heart hypertrophy;Oxidative stress;Lipotoxicity;肥胖;骨骼肌;心臟肥大;氧化壓力;脂肪中毒
出版社: 動物科學系所
引用: 黃郁芬。2010。任食引發肥胖改變白肉種雞胰臟磷脂代謝與胰島素分泌-細胞自我防護機制之探討。碩士論文。中興大學。台中。 潘昱恩。2010。任食影響白肉種雞與不同台灣肉用土雞產蛋性能-肥胖相關代謝失調之探討。碩士論文。中興大學。台中。 Armoni, M., C. Harel, F. Bar-Yoseph, S. Milo, and E. Karnieli. 2005. Free fatty acids repress the GLUT4 gene expression in cardiac muscle via novel response elements. J. Biol. Chem. 280:34786-34795. Arthur, J.A. and G. A. A. Albers. 2003. Industrial perspective on problems and issues associated with poultry breeding. Poultry Genetics, Breeding and Biotechnology. Wallingford. Atkinson L. L., R. Kozak, S. E. Kelly, Besikci A. Onay, J. C. Russell, and G. D. Lopaschuk. 2003. Potential mechanisms and consequences of cardiac triacylglycerol accumulation in insulin-resistant rats. Am. J. Physiol. Endocrinol. Metab. 284:E923-930. Baillie, T. A. and J. G. Slatter. 1991. Glutathione: a vehicle for the transport of chemically reactive metabolites in vivo. Acc. Chem. Res. 24:264-270. Bandyopadhyay, G. K., J. G. Yu , J. Ofrecio, and J. M. Olefsky. 2006. Increased malonyl-CoA levels in muscle from obese and type 2 diabetic subjects lead to decreased fatty acid oxidation and increased lipogenesis; thiazolidinedione treatment reverses these defects. Diabetes. 55: 2277-2285. Baranowski, M, A. Błachnio, P. Zabielski P, and J. Gorski. 2007. PPARalpha agonist induces the accumulation of ceramide in the heart of rats fed high-fat diet. J. Physiol. Pharmacol.58:57-72. Bose, R., M. Verheij., A. Haimovitz-Friedman, K. Scotto, Z. Fuks, and R. Kolesnick. 1995. Ceramide synthase mediates daunorubicin-induced apotosis: an alternative mechanism for generating death signals. Cell. 82: 405-414. Buettner, C., E.D. Muse, A. Cheng, L. Chen, T. Scherer, A. Pocai, K. Su, B. Cheng, X. Li, J. Harvey-White, G.J. Schwartz, G. Kunos, L. Rossetti, and C. Buettner. 2008. Leptin controls adipose tissue lipogenesis via central, STAT3-independent mechanisms. Nat. Med. 14:667-675. Butler, J. G., G. G. Jayson, and A. J. Swallow. 1975. Biochim. Biophys. Acta. 408: 215-222 Cade, WT, D. N.Reeds, E. T.Overton, P. Herrero, A. D. Waggoner, V. G. Davila-Roman, S. Lassa-Claxton, R. J. Gropler, P. F. Soto, M. J. Krauss, K. E. Yarasheski, and L. R. Peterson. 2011. Effects of human immunodeficiency virus and metabolic complications on myocardial nutrient metabolism, blood flow, and oxygen consumption: A Cross-Sectional Analysis. Cardiovasc, Diabetol. 10:111. Chadwick, J. and W.N. Mann. 1950. Medical Works of Hippocrates. MA: Blackwell Scientific Publications. Boston. Chen, S. E., J. P. McMurtry, and R. L. Walzem. 2006. Overfeeding-induced ovarian dysfunction in broiler breeder hens is associated with lipotoxicity. Poult. Sci. 85:70-81. Corton, J.M., J. G. Gillespie, S.A. Hawley, and D.G. Hardie. 1995. 5-aminoimidazole-4-carboxamide ribonucleoside. A specific method for activating AMP-activated protein kinase in intact cells? Eur. J. Biochem. 229: 558-565. Coursin, D. B., H. P. Cihla, T. D. Oberley, and L. W. Oberley. 1992. Immunolocalization of antioxidant enzymes and isozymes of glutathione S-transferase in normal rat lung. Am. J. Physiol. 263:679-691. Dandona, P., A. Aljada, and A. Bandyopadhyay. 2004. Inflammation: the link between insulin resistance, obesity and diabetes. Trends. Immunol. 25:4-7. Danielle, F. 2009. Energy metabolism in the heart of the diabetic patient. Heart Metab. 45:35-37. DeFronzo, R. A., E. Ferrannini, and D. C. Simonson. 1989. Fasting hyperglycemia in non-insulin-dependent diabetes mellitus: contributions of excessive hepatic glucose production and impaired tissue glucose uptake. Metabolism. 38:387-395. DeFronzo, R. A., R. Gunnarsson, O. Bjorkman, M. Olsson, and J. Wahren. 1985. Effects of insulin on peripheral and splanchnic glucose metabolism in noninsulin-dependent (type II) diabetes mellitus. J. Clin. Invest. 76:149-155. Dentin, R., F. Benhamed, I. Hainault, V. Fauveau, F. Foufelle, J. R. Dyck, J. Girard, and C. Postic. 2006. Liverspecific inhibition of ChREBP improves hepatic steatosis and insulin resistance in ob/ob mice. Diabetes 55:2159-2170. Dupont, J., S. Tesseraud, and J. Simon. 2009. Insulin signaling in chicken liver and muscle. Gen. Comp. Endocrinol. 163:52-57. Dyntar, D., M. Eppenberger-Eberhardt, K. Maedler, M. Pruschy, H. M. Eppenberger, G. A. Spinas, and M. Y. Donath. 2001. Glucose and palmitic acid induce degeneration of myofibrils and modulate apoptosis in rat adult cardiomyocytes. Diabetes. 50:2105-2113. Dzamko, N. L. and G. R. Steinberg. 2009. AMPK-dependent hormonal regulation of whole-body energy metabolism. Acta. Physiol. 196:115-127. Eitan, Y. and Soller, M. 2002. Associated effects of sixty years of commercial selection for juvenile growth rate in broiler chickens: Endo/exophysiological, or genetic? Proc. 7th World Congress on Genetics Applied to Livestock Production. France. Evans, J. L., I. D. Goldfine, B. A. Maddux, and G. M. Grodsky. 2002. Oxidative stress and stress-activated signaling pathways: a unifying hypothesis of type 2 diabetes. Endocr. Rev. 23:599-622. Ferrannini, E., D. C. Simonson, L. D. Katz, G. Jr. Reichard, S. Bevilacqua, E. J. Barrett, M. Olsson, and R. A. DeFronzo. 1988. The disposal of an oral glucose load in patients with non-insulin-dependent diabetes. Metabolism. 37:79-85. Flock, D.K., K.F. Laughlin, and J. Bentley. 2006. Minimizing losses in poultry breeding and production: how breeding companies contribute to poultry welfare. Lohmann. Information. 41: 20-28. Gallagher, E. J., D. Leroith, and E. Karnieli. 2010. Insulin resistance in obesity as the underlying cause for the metabolic syndrome. Mt. Sinai. J. Med. 77:511-523. Garcia-Ruiz, C., A. Colell, M. Mari, A. Morales, and J. C. Fernandez-Checa. 1997. Direct effect of ceramide on the mitochondrial electron transport chain leads to generation of reactive oxygen species. Role of mitochondrial glutathione. J. Biol. Chem. 1997. 272):11369-11377. Garcia-Ruiz, C., M. Mari, A. Colell, A. Morales, F. Caballero, J. Montero, O. Terrones, G. Basanez, and J.C. Fernandez-Checa. 2009. Mitochondrial cholesterol in health and disease. Histol. Histopathol. 24:117-132. Giorgio, M., M. Trinei, E. Migliaccio, and P. G. Pelicci. 2007. Hydrogen peroxide: a metabolic by-product or a common mediator of ageing signals? Nat. Rev. Mol. Cell. Biol. 8:722-728. Griffin, H. L., R. V. Greene and M. A. Cotta. 1992. Isolation and characterization of an alkaline protease from the marine shipworm bacterium. Curr. Microbiol. 24: 111-117. Groop, L. C., R. C. Bonadonna, S. DelPrato, K. Ratheiser, K. Zyck, E. Ferrannini, and R. A. DeFronzo. 1989. Glucose and free fatty acid metabolism in non-insulin-dependent diabetes mellitus. Evidence for multiple sites of insulin resistance. J. Clin. Invest. 84:205-213. Ha, J., S. Daniel, S. S. Broyles ,and K. H. Kim. 1994. Critical phosphorylation sites for acetyl-CoA carboxylase activity. J. Biol. Chem. 269: 22162-22168. Hannun, Y. and C. Luberto. 2000. Ceramide in the eukaryotic stress response. Trends. Cell Biol. 10: 73-80. Hardie, D. G., J. W. Scott, D. A. Pan, and E. R. Hudson. 2003. Management of cellular energy by the AMP-activated protein kinase system. FEBS. Lett. 546, 113-120. Harvey, S., and R. J. Etches. 1997. Perspectives in Avian Endocrinology. J. W. Arrowsmith Ltd. Bristol, UK. Hazelwood, R. L., J. R. Kimmel, and H. G. Pollock. 1968. Biological characterization of chicken insulin activity in rats and domestic fowl. Endocrinology. 83: 1331-1336 Hermier, D., A. Quignard-Boulange, I. Dugail, G. Guy, M. R. Salichon, L. Brigant, B. Ardouin, and B. Leclercq. 1989. Evidence of enhanced storage capacity in adipose tissue of genetically fat chickens. J. Nutr. 119:1369-1375. Hernandez, O. M., D. J. Discher, N. H. Bishopric, and K. A. Webster. 2000. Rapid activation of neutral sphingomyelinase by hypoxia-reoxygenation of cardiac myocytes. Circ. Res. 86:198-204. Hillgartner, F. B., T. Charron, and K. A. Chesnut. 1996. Alterations in nutritional status regulate acetyl-CoA carboxylase expression in avian liver by a transcriptional mechanism. Biochem. J. 319:263-268. Holland W. L. and A. S. Scott. 2008. Sphingolipids, insulin resistance, and metabolic disease: new insights from in vivo manipulation of sphingolipid metabolism. Endocr. Rev. 29: 381-402. Hotamisligil, G. S. 2003. Inflammatory pathways and insulin action. Int. J. Obes. Relat. Metab. Disord. 27:S53-S55. Hotamisligil, G.S. and E. Erbay. 2008. Nutrient sensing and inflammation in metabolic diseases. Nat. Rev. Immunol. 8:923-934. Isaganaitis, E. and R. H. Lustig. 2005. Fast food, central nervous system insulin resistance, and obesity. Arterioscler. Thromb. Vasc. Biol. 25: 2451-2462. Jarvis, W. D. and S. Grant. 1998. The role of ceramide in the cellular response to cytotoxic agents. Curr. Opin. Oncol. 10: 552-559. Jones, D. P., L. H. Eklow, and S. Thor. 1981. Orrenius.Metabolism of hydrogen peroxide in isolated hepatocytes: relative contributions of catalase and glutathione peroxidase in decomposition of endogenously generated H2O2. Arch. Biochem. Biophys. 210:505-516. Kim, J. A., Y. Wei, and J. R. Sowers. 2008. Role of mitochondrial dysfunction in insulin resistance. Circ. Res. 102: 401-414. Kitatani, K., J. Idkowiak-Baldys, and Y. A. Hannun. 2008. The sphingolipid salvage pathway in ceramide metabolism and signaling. Cell Signal.20:1010-1018. Kono, T., M. Nishida, Y. Nishiki, Y. Seki, K. Sato, and Y. Akiba. 2005. Characterisation of glucose transporter (GLUT) gene expression in broiler chickens. Br. Poult. Sci. 46:510-515. Lakari, E, P. Paakko, P. Pietarinen-Runtti, and V. L. Kinnula. 2000. Manganese superoxide dismutase and catalase are coordinately expressed in the alveolar region in chronic interstitial pneumonias and granulomatous diseases of the lung. Am. J. Respir. Crit. Care. Med. 161:615-621. Lakari, E., P. Paakko, and V. L. Kinnula. 1998. Manganese superoxide dismutase, but not Cu/Zn superoxide dismutase, is highly expressed in the granulomas of pulmonary sarcoidosis and extrinsic allergic alveolitis. Am. J. Respir. Crit. Care. Med. 158:589-596. Leclercq B., G. Guy, and F. Rudeaux. 1988. Growth characteristics and lipid distribution in two lines of chicken selected for low or high abdominal fat. Genet. Sel. Evol. 21:69-80. Leveille, G. A. 1967. Control of lipogenesis in adipose tissue of fasted and fed meal-eating rats. J. Nutr. 92:460-466. Lin, H., D. D. Vos, E. Decuypere, and J. Buyse. 2008. Dynamic changes in parameters of redox balance after mild heat stress in aged laying hens (Gallus gallus domesticus). Comp. Biochem. Physiol. C. 147:30-35. Lin, Y., S. I. Itani, T. G. Kurowski, D. J. Dean, Z. Luo, G. C. Yaney, and N. B. Ruderman. 2001. Inhibition of insulin signaling and glycogen synthesis by phorbol dibutyrate in rat skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 281:8-15. Liu, L., X. Shi, K.G. Bharadwaj, S. Ikeda, H. Yamashita, H. Yagyu, J. E. Schaffer, Y. H. Yu, and I. J. Goldberg. 2009. DGAT1 expression increases heart triglyceride content but ameliorates lipotoxicity. J. Biol. Chem. 284:36312-36323. Maedler, K., J. Oberholzer, P. Bucher, G. A. Spinas, and M. Y. Donath. 2003. Monounsaturated fatty acids prevent the deleterious effects of palmitate and high glucose on human pancreatic beta-cell turnover and function. Diabetes. 52:726-733. Mathias, S., L A. Pena, and R. N. Kolesnick. 1998. Signal transduction of stress via ceramide. Biochem. J. 335:465-480. McGarry, J. D., M. J. Stark, and D. W. Foster. 1978. Hepatic malonyl-CoA levels of fed, fasted and diabetic rats as measured using a simple radioisotopic assay. J. Biol. Chem. 253:8291-8293. McGarry, J. D.and N. F. Brown. 1997. The mitochondrial carnitine palmitoyltransferase system. From concept to molecular analysis. Eur. J. Biochem. 244:1-14. Molares, A.E., A. Pe''rez-Jeme''nez, M. C. Hidalgo, E. Abellan, and G. Cardenate. 2004. Oxidative stress and antioxidant defenses after prolonged starvation in Dentex dentex liver. Comp. Biochem. Physiol. C. 139: 153-161. Munday, M. R. 2002. Regulation of mammalian acetyl-CoA carboxylase. Biochem. Soc. Trans. 30:1059-1064. Munday, M. R., D. G. Campbell, D. Carling, and D. G. Hardie. 1988. Identification by amino acid sequencing of three major regulatory phosphorylation sites on rat acetyl-CoA carboxylase. Eur. J. Biochem. 175:331-338. Mungrue, I.N., R. Gros, X. You, A. Pirani, A. Azad, T. Csont, R. Schulz, J. Butany, D. J. Stewart, and M. Husain. 2002. Cardiomyocyte overexpression of iNOS in mice results in peroxynitrite generation, heart block, and sudden death.J. Clin. Invest. 109:735-743. Muniyappa, R., M. Iantorro, and M. J.Quon. 2008. An integrated view of insulin resistance and endothelial dysfunction. Endocrinol. Metab. Clin. North. Am. 37:685-711. Muoio, D. M., G. L. Dohm, E. B. Tapscott, and R. A. Coleman. 1999. Leptin opposes insulin’s effects on fatty acid partitioning in muscle isolated from obese ob/ob mice. Am. J. Physiol. 276:E913-E921. Navas-Carretero, S., M. Cuervo, I. Abete, M. A. Zulet, and J. A. Martinez. 2010. Frequent consumption of selenium-enriched chicken meat by adults causes weight loss and maintains their antioxidant status. Biol. Trace. Elem. Res. 143:8-19. Noyan, A., W. J. Lossow, N. Brot, and I. L. Chaikoff. 1964. Pathway and form of absorption of palmitic acid in the chicken. J. Lipid Res. 5:538-541. O''Hea, E . K. and G. A. Leveille. 1969. Significance of adipose tissue and liver as sites of fatty acid synthesis in the pig and the efficiency of utilization of various substrates for lipogenesis. J. Nutr. 99:338. Oury, T. D., L. Y. Chang, S. L. Marklund, B. J. Day, and J. D. Crapo. 1994. Immunocytochemical localization of extracellular superoxide dismutase in human lung. Lab. Invest. 70:889-898. Paglia, D. E. and W. N. Valentine. 1967. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J. Lab. Clin. Med. 70:158-169. Pagotto, U. 2009. Where does insulin resistance start? The brain Diabetes Care. 32:S174-S177. Paola, D. M, T. Cocco, and M. Lorusso. 2000. Ceramide interaction with the respiratory chain of heart mitochondria. Biochemistry. 39:6660-6668. Pendergrass, M., A. Bertoldo, R. Bonadonna, G. Nucci, L. Mandarino, C. Cobelli, and R. A. DeFronzo. 2007. Muscle glucose transport and phosphorylation in type 2 diabetic, obese nondiabetic, and genetically predisposed individuals. Am. J. Physiol. Endocrinol. Metab. 292:E92-E100. Pepys, M. B., and G. M. Hirschfield. 2003. C-reactive protein: A critical update. J. Clin. Invest. 111:1805-1812. Ren, J., L. Pulakat, A. Whaley-Connell, and J. R. Sowers. 2010. Mitochondrial biogenesis in the metabolic syndrome and cardiovascular disease. J. Mol. Med. 88:993-1001. Roebuck, K. A., J. J. Jacobs, and T. T. Glant. 1999. New horizons in orthopaedic research: elucidation of cellular signal transduction pathways. J. Bone. Joint. Surg. Am. 81:599-602. Ross, M. H. and W. Pawlina. 2006. Histology: A Text and Atlas. / Edition 5. Lippincott Williams & Wilkins. U. S .A. Sandstrom, J., P. Nilsson, K. Karlsson ,and S. L. Marklund. 1994. 10-fold increase in human plasma extracellular superoxide dismutase content caused by a mutation in heparin-binding domain. J. Biol. Chem. 269:19163-19166. Santos, T. R., M. C. Foss-Freitas, and G. R. Nogueira-Filho. 2010. Impact of periodontitis on the diabetes-related inflammatory status. J. Can. Dent. Assoc. 76:a35. Schmitz-Peiffer, C., D. L. Craig, and T. J. Biden. 1999. Ceramide generation is sufficient to account for the inhibition of the insulin-stimulated PKB pathway in C2C12 skeletal muscle cells pretreated with palmitate. J. Biol. Chem. 274:24202-24210. Seki, Y., K. Sato, T. Kono, H. Abe, and Y. Akiba. 2003. Broiler chickens (Ross strain) lack insulin-responsive glucose transporter GLUT4 and have GLUT8 cDNA. Gen.Comp. Endocrinol. 133:80-87. Shulman, G.I. 2000. Cellular mechanisms of insulin resistance. J. Clin. Invest. 106:171-176. Simon, J. 1989. Chicken as a useful species for the comprehension of insulin action. Crit. Rev. Poult. Biol. 2:121-148. Sinsigalli, N. A., P. M. John, A. C. Jerry, and B. S. Paul. 1987. Glucose tolerance, plasma insulin and immunoreactive glucagon in chickens selected for high and low body weight. J. Nutr. 117:941-947. Slot, J.W., H. J. Geuze, B. A. Freeman, and J. D. Crapo. 1986. Intracellular localization of the copper-zinc and manganese superoxide dismutases in rat liver parenchymal cells. Lab. Invest. 55:363-371. Sparagna, G. C., D. L. Hickson-Bick, L. M. Buja, and J. B. McMillin. 2000. A metabolic role for mitochondria in palmitate-induced cardiac myocyte apoptosis. Am. J. Physiol. Heart Circ. Physiol. 279:H2124-H2132. Starling, R. C. 2005. Inducible nitric oxide synthase in severe human heart failure: impact of mechanical unloading. J. Am. Coll. Cardiol. 45:1425-1427. Stefan, N., K. Kantartzis, and H. U. H‥aring. 2008. Causes and metabolic consequences of fatty liver. Endocr. Rev. 29:939-960. Steinberg, G. R., B. J. Michell, B. J. Van Denderen, M. J. Watt, A.L.Carey, B. C. Fam, S. Andrikopoulos, J. Proietto, C. Z. Gorgun, D. Carling, G. S. Hotamisligil, M. A. Febbraio, T. W. Kay, and B. E. Kemp. 2006. Tumor necrosis factor alpha-induced skeletal muscle insulin resistance involves suppression of AMP-kinase signaling. Cell Metab. 4:465-474. Strecker, V., S. Mai, B. Muster, S. Beneke, A. Burkle, J. Bereiter-Hahn, and M. Jendrach. 2010. Aging of different avian cultured cells: lack of ROS-induced damage and quality control mechanisms. Mech. Ageing Dev. 131:48-59. Summers, S.A., L.A. Garza, H. Zhou, and M.J. Birnbaum. 1998. Regulation of insulin-stimulated glucose transporter GLUT4 translocation and Akt kinase activity by ceramide. Mol. Cell Biol. 18:5457-5464. Thompson, D., M. B. Pepys, and S. P. Wood. 1999. The physiological structure of human C-reactive protein and its complex with phosphocholine. Structure 7:169-177. Vasquez-Vivar, J., B. Kalyanaraman, P. Martasek, N. Hogg, B. S. Masters, H. Karoui, P. Tordo, and K. A. Jr. Pritchard. 1998. Superoxide generation by endothelial nitric oxide synthase: the influence of cofactors. Proc. Natl. Acad. Sci. USA. 95:9220-9225. Viollet, B., L. Lantier, J. Devin-Leclerc, S. Hebrard, C. Amouyal, R. Mounier, M. Foretz, and F. Andreelli. 2009. Targeting the AMPK pathway for the treatment of Type 2 diabetes. Front. Biosci. 14:3380-3400. Watt, M. J. and G. R. Steinberg. 2007. Pathways involved in lipid-induced insulin resistance in obesity. Future Lipidol. 2:659-667. Yeh, S. J. and G. A. Leveille. 1973. Significance of skin as a site of fatty acid and cholesterol synthesis in the chick. Proc. Soc. Exp. Biol. Med. 142: 115-119. Yi, F., A. Y. Zhang, J. L. Janscha, P. L. Li, and A. P. Zou. 2004. Homocysteine activates NADH/NADPH oxidase through ceramide-stimulated Rac GTPase activity in rat mesangial cells. Kidney Int. 66:1977-1987. Zhou, J. F., J. X. Chen, H. C. Shen, and D. Cai. 2002. Abnormal reactions of free radicals and oxidative damages in the bodies of patients with chronic glomerulonephritis. Biomed. Environ. Sci. 15:233-244.
本研究將白肉種雞分為限飼組與任飼組,餵飼7天或是21天後犧牲採樣。葡萄糖清除率實驗顯示任飼雞隻葡萄糖清除有暫時性遲緩的現象,但最終仍會回復與限飼雞隻相同正常濃度,推論此暫時性的高血糖會經由其他組織代償性清除。以AMPK(AMP-activated protein kinase)的活化檢視組織內的能量狀態,結果顯示胸肌AMPK活性在任飼7與21天後都顯著較低,此顯示胸肌其能量處於充足狀態。不論是7或21天任飼對胸肌三酸甘油脂(TG)堆積皆沒有影響,但carnitine palmitoyltransferase I(CPT1)與diglyceride acyltransferase(DGAT)基因表達提高,此表示任飼導致胸肌過多acyl-CoA可能被導入β-oxidation。任飼雞隻胸肌神經鞘磷(sphingomyeline)含量提高但神經醯胺(ceramide)含量正常,且促發炎因子IL-1β(interleukin-1β)含量高於限飼組僅發生在7天處理組,此顯示任飼雞隻胸肌可能脂肪中毒(lipotoxicity)機制並非透過ceramide與IL-1β達成。而任飼導致胸肌的Akt活化降低,且甚至在主要抗氧化物榖胱甘肽(glutathione)與其氧化態(glutathione disulfide)之比值(GSH/GSSG)亦降低,而超氧歧化酶(superoxide dismutase,SOD)活性顯著高於限飼雞隻,由此推斷過多的游離脂肪酸造成胸肌細胞毒性與後續可能胰島素抗性係由於β-oxidation增強與過多reactive oxygen species(ROS)釋出所引起。與胸肌類似,腿肌AMPK活化在任飼7天後顯著較低,任飼對腿肌TG堆積明顯提高,且提高DGAT但抑制acetyl-CoA carboxylase(ACC)基因表達,而對CPT1沒影響,此表示任飼導致腿肌過多acyl-CoA係因外源性攝入所引起,同時DGAT可能扮演著保護腿肌細胞角色,免於過多acyl-CoA被導入ceramide新生合成途徑或β-oxidation。任飼雞隻腿肌神經鞘磷sphingomyelinc與ceramide含量正常,但21天處理IL-1β含量顯著高於限飼組,此顯示任飼雞隻腿肌脂肪中毒機制可能透過IL-1β達成。而任飼亦導致腿肌Akt活化降低,其SOD活性卻顯著低於限飼雞隻,由此推斷過多的游離脂肪酸造成腿胸肌細胞毒性與胰島素抗性可能是透過IL-1β干擾Akt訊號途徑而達成。任飼對心臟AMPK與Akt活化及IL-1β含量沒有影響,任飼亦提高心臟ceramide與TG含量,也一致性的提高serine palmitoyl transferase(SPT)、sphingomyelinase(SMase),ACC、CPT1與DGAT基因表現,但對sphingomyelin含量沒有影響,這些結果顯示心臟過多acyl-CoA可能被導入ceramide生成途徑與β-oxidation,進而造成細胞毒性。而任飼雞隻心臟SOD活性與inducible nitric oxide synthase(iNOS)基因表達顯著提高,而榖胱甘肽氧化還原比例降低,同時其心臟相對重量、心室肥大程度以及組織切片免疫細胞滲入情形顯著較限飼組高,這些結果顯示過多的游離脂肪酸造成心臟過高氧化壓力與ceramide堆積,而此脂肪中毒的逐步發展可能造成心臟功能失調與肥大的病變。

After decades of genetic selection for rapid growth and high feed conversion rate, the modern broilers developed a tendency to overeat and several undesirable defects, including obesity, fatty liver, ascites, and sudden death. In mammals, the mechanisms linking obesity to metabolic syndrome and mellitus diabetes are well studied. Due to the intrinsic differences in physiology of avian species such as natural hyperinsulinemia and insulin insensitivity of peripheral tissues, however, the mechanisms linking obesity to tissue steatosis are poorly studied. In the study, a series of approaches were undertaken to explore the mechanisms linking obesity to cardio- and skelato-muscular dysfunctions. Broiler breeder hens receiving ad libitum or restricted feeding for 7 or 21 days were sacrificed for analyses. Results showed that overfeeding resulted in a temporarily sluggish plasma glucose clearance rate, suggesting transient insulin resistance but followed by compensatory uptake of blood glucose by some certain tissues/organs. In breast muscle, analyses of AMP-activated protein kinase (AMPK), a sensor of cellular energy status suggested that overfeeding suppressed AMPK activation and thereby indicated fuel saturation in the breast muscle of overfed hens. Breast triglyceride content was not affected by ad libitum feeding but carnitine palmitoyl transferase I(CPT1)and diglyceride acyltransferase(DGAT)transcript abundance were promoted, suggesting that accumulated acyl-CoA may be channeled into β-oxidation. Ad libitum feeding also promoted breast sphingomyelin content, but exerted no effects on ceramide content. Increased IL-1β(interleukin-1β)production only temporarily occurred after ad libitum feeding for 7 days. These results suggest that susceptible lipotoxicity is not mediated by ceramide and IL-1β in the breast muscle. Overfeeding also suppressed breast Akt activation and superoxide dismutase (SOD) activity, despite that glutathione/glutathione disulfide rario (GSH/GSSG) was concomitantly decreased, suggesting that excessive fatty acid-induced cytoxicity and susceptible insulin insensitivity are mediated by enhanced β-oxidation and subsequent electron leakage and reactive oxygen species (ROS) production. Similar to the responses of breast muscle, overfeeding promoted AMPK activation, triglyceride content and DGAT expression in leg muscle, but decreased acetyl-CoA carboxylase (ACC)transcript abundance and exerted no effects on CPT1 expression. These results suggest that accumulated fatty acyl-CoA of leg muscle is derived from exogenous origins and DGAT may function as a cytoprotective mechanism to direct the cellular fatty acids away from ceramide de novo synthesis and β-oxidation. Leg muscle sphingomyelin and ceramide content were not affected, but IL-1β production was significantly increased by ad libitum feeding, suggesting that susceptible lipotoxicity in the leg muscle may be operated through proinflammatory IL-1β production. Overfeeding suppressed leg muscle Akt activation and SOD activity, but had no effects on glutathione redox ratios. Therefore, the cause of excessive fatty acid-induced cytoxicity and susceptible insulin insensitivity in the leg muscle may be attributed to perturbations of Akt signaling by IL-1β. Activation of AMPK and Akt and IL-1β production in the heart were not different between overfed and restricted hens. Ad libitum feeding significantly promoted heart ceramide and TG content consistent with upregulation of serine palmitoyl transferase(SPT), sphingomyelinase(SMase), ACC, CPT1 and DAG transcript abundance, but exerted no effects on sphingomyelin content. These results suggest that excessive acyl-CoA is channeled into ceramide synthesis and β-oxidation leading to lipotoxicity in the heart of overfed hens. Ad libitum feeding also significantly promoted heart SOD activity and inducible nitric oxide synthase(iNOS)transcription, and glutathione redox ratios were significantly decreased. Furthermore, overfeeding also resulted in a higher fractional heart weight, ventricle hypertrophy, and infiltration of immune cells into the cardiomuscular matrices. These results indicate that increased cellular fatty acid availability causes oxidative pressure and ceramide accumulation in the heart, which in turn may render the progression of lipotoxicity leading to cardiomyocyte dysfunction and steatotic hypertrophy. Taken together, ad libitum feeding induces lipotoxic development and susceptible insulin resistance in the skeletal muscle of broiler hens. However, refusal of excessive fuels in the skeletal muscle may shuttle the fuels to other vulnerary organs such as heart leading to higher insults of oxidative stress and ceramide accumulation, which thereby impair heart functionality and induce steatotic hypertrophy.
其他識別: U0005-0802201216074900
Appears in Collections:動物科學系

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.