Please use this identifier to cite or link to this item:
標題: 含軀幹被動式機器人之水平面步行控制
Biped Locomotion Control with Torso Based on Passive-Dynamic Walking
作者: 彭柏舜
Peng, Bo-Shun
關鍵字: passive biped walking robot;被動式雙足步行機器人;hybrid dynamics model;virtual holonimic constraint;limit cycle;direct adaptive control;混合動力學模式;虛擬完整約束條件;極限循環;直接式適應控制
出版社: 機械工程學系所
引用: [1] T. McGeer, “Passive Dynamic Walking,” Int. J. of Robotics Research, Vol. 9, No. 2, pp. 62 – 82, 1990. [2] T. McGeer, “Passive Walking with Knees,” in Proc. IEEE Int Conf. on Robotics and Automation, Vol. 3, pp. 1640 – 1645, 1990. [3] A. Goswami, B. Espiau, and A. Keramane, “Limit Cycles and Their Stability in a Passive Bipedal Gait,” in Proc. IEEE Int. Conf. on Robotics and Automation, Vol.1, pp. 246 – 251, 1996. [4] B. Thuilot, A. Goswami, and B. Espiau, “Bifurcation and Chaos in a Simple Passive Bipedal Gait,” in IEEE Int. Conf. on Robotics and Automation, Vol. 1, pp. 792 – 798, 1997. [5] F. Asano and M. Yamakita, “Virtual Gravity and Coupling Control for Robotic Gait Synthesis,” IEEE Trans. on Syst., Man, Cybern. A, Vol. 31, No. 6, pp. 737 – 745, 2001. [6] M. W. Spong and F. Bullo, “Controlled Symmetries and Passive Walking,” IEEE Trans. on Automatic Control, Vol. 50, No. 7, pp. 1025 – 1031, 2005. [7] T. Narukawa, M. Takahashi, and K. Yoshida, “Biped Locomotion on Level Ground by Torso and Swing-leg Control Based on Passive-Dynamic Walking,” IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 4009 – 4014, 2005. [8] A. Shiriaev, A. Robertsson, J. Perram, and A. Sandberg, “Periodic Motion Planning for Virtually Constrained Euler-Lagrange Systems,” Systems Control Letters, Vol. 55, pp. 900 – 907, 2006. [9] 陳碩彥, “具被動步行特性雙足機器人之混和系統建模與主動式步態控制,”國立中興大學機械工程學系碩士論文, 2006. [10] M. W. Spong, J. K. Holm, and D. Lee, “Passivity-Based Control of Bipedal Locomotion,” IEEE Robotics and Automation Magazine, Vol. 14, No. 2, pp. 30 – 40, 2007. [11] 吳思賢, “利用確切的極限循環軌跡及逆向步進法控制雙足機器人的步態,”南台科技大學機械工程研究所碩士論文, 2009. [12] L. B. Freidovich, U. Mettin, A. S. Shiriaev, and M. W. Spong, “A Passive 2DOF Walker: Finding Gait Cycles Using Virtual Holonomic Constraints,” in IEEE Conf. on Decision and Control, pp. 5214 – 5219, 2008. [13] L. B. Freidovich, U. Mettin, A. S. Shiriaev, and M. W. Spong, “A Passive 2-DOF Walker: Hunting for Gaits Using Virtual Holonomic Constraints,” IEEE Trans. on Robotics, Vol. 25, No. 5, pp. 1202 – 1208, 2009.
本論文先建立具軀幹之雙足步行機器人的混合動態模式,包括使用Lagrange方程式推導出單腳站立擺動期(Swing Phase)的運動方程式,以及利用角動量守恆原理,推導出碰撞前後(Impact Phase)的角速度轉換方程式。再考慮無軀幹之簡易被動式雙足機器人走下斜坡的情況,經由碰撞條件和碰撞前後的角速度轉換方程式,推導虛擬完整約束條件,將問題轉為最佳化的問題,以求解被動式雙足機器人走下斜坡之極限循環軌跡(limit cycle)所對應的初始狀態。本研究使用Simplex演算法,縮短找尋初始條件的時間。最後,並進行水平面之主動控制設計,利用走下斜坡之極限循環軌跡做為水平面主動控制時之期望軌跡,可使機器人行走於水平面時,仍具有走下斜坡的省能姿態,可縮小馬達所需的驅動扭矩。提出公稱回授控制和直接式適應控制策略,使簡易被動式機器人和具軀幹之主動式雙足機器人的步態軌跡和軀幹角度,均能追蹤到期望軌跡。

In this thesis, the hybrid dynamics model for a passive biped walking robot with torso along a shallow slope is first derived. The model includes the swing-phase dynamics equations derived using the Lagrange's equations, and the impact-phase angular velocity conversion equations derived via the use of conservation of angular momemtum principle. Then the simple passive biped robot without torso down a shallow slope is considered. Based on the dynamics model, the impact conditions, and the velocity conversion equations, a virtual holonomic constraint is derived for hunting the possible initial conditions which can obtain a stable limit cycle gait.
In this study, a simplex algorithm is used to find the possible initial conditions based on minimization of a performance index. Finally, the limit-cycle gait trajectory is used as the desired trajectory for the control of the corresponding active biped walking robot with torso on a ground level. A nominal nonlinear feedback control law and a direct adaptive control law are derived using Lyapunov stability theory. Computer simulations are used to demonstrate the effectiveness of the proposed control strategies.
其他識別: U0005-2207201016152600
Appears in Collections:機械工程學系所

Show full item record
TAIR Related Article

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.