Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/25017
標題: 以紅麴酸性蛋白酶或鹼性蛋白酶處理之雞腳水解產物中血管收縮素轉化酶抑制活性及in vivo試驗中抗高血壓效果之評估
Evaluation of the Angiotensin Converting Enzyme Inhibitory Activity and the Antihypertension Efficiency in in vivo for Chicken Feet Hydrolysates Treated by Monascus purpureus Acid Proteinase or Alcalase
作者: 陳靖雯
Chen, Ching-Wen
關鍵字: ACE;血管收縮素轉化酶羥脯胺酸;hydroxyproline;spontaneously hypertensive rats;systolic blood pressure;Monascus purpureus acid proteinase;alcalase;自發性高血壓大鼠;收縮壓;紅麴酸性蛋白酶鹼性蛋白酶
出版社: 動物科學系所
引用: 丁予安。1999。臨床高血壓學。藝軒圖書出版社,新店市。 文紀茹。2005。蛋殼膜膠原蛋白之萃取及其水解液機能性之研究。國立台灣大學畜產學研究所碩士論文。 余鍾蘭。2004。降高血壓胜肽基因之選拔與表現。東海大學食品科學系碩士論文。 長谷川武志。1998。高血壓預防與治療。輕舟出版社,台北市。 林彥志。2005。衍自雞胚胎中血管收縮素轉化酶抑制劑於in vitro與in vivo試驗中抗高血壓能力之評估。國立中興大學碩士學位論文。 陳姿利。1999。利用雞蛋白水解物生產血管收縮素轉化酶抑制劑。國立台灣大學食品科技研究所博士論文。 陳彥伯。2004。克弗爾抑制血管緊縮素轉化酶之能力及血管緊縮素轉化酶抑制肽於大腸桿菌中之表現。國立台灣大學畜產學研究所碩士論文。 陳國群。1999。臨床藥物治療精要。藝軒圖書出版社,新店市。 陳慧玲。1996。血管收縮素轉化酶的檢測、純化及性質之研究。國立台灣大學農業化學研究所博士論文。 楊欣怡。2002。大豆蛋白水解物對自發性高血壓大鼠血壓的影響。台北醫學院保健營養學研究所碩士論文。 劉振軒。1996。組織病理染色技術與圖譜。台灣養豬科學研究所。 羅伯.巴克曼與派絲.衛斯考特。2004。控制高血壓:認識高血壓的症狀及治療。智庫股份有限公司,台北市。 Aoki, H., I. Uda, K. Tagami, Y. Furuya, Y. Endo and K. Fujimoto. 2003. The production of a new Tempeh-like fermented soybean containing a high level of γ-aminobutyric acid by anaerobic incubation with Rhzopus. Bioscience Biotechnology Biochemistry 67: 1018-1023. Aoki, H., Y. Furuya, Y. Endo and K. Fujimoto. 2003. Effect of γ-aminobutyric acid-enriched Tempeh-like fermented soybean (GABA-tempeh) on the blood pressure of spontaneously hypertensive rats. Bioscience Biotechnology Biochemistry 67: 1806-1808. Arai, S., T. Osawa, H. Ohigashi, M. Yoshikawa, S. Kaminogawa, M. Watanabe, T. Ogawa, K. Okubo, S. Watanabe, H. Nishino, K. Shinohara, T. Esashi and T. Hirahara. 2001. A mainstay of functional food science in Japan – history, present status, and future outlook. Bioscience Biotechnology Biochemistry 65: 1-13. Arihara, K., Y. Nakashima, T. Mukai, S. Ishikawa and M. Itoh. 2001. Peptide inhibitors for angiotensin-converting enzyme from enzymatic hydrolysates of porcine skeletal muscle proteins. Meat Science 57: 319-324. Atkinson, A. B. and J. I. S. Robertson. 1979. Captopril in the treatment of clinical hypertension and cardiac failure. The Lancet 2: 836-839. Badii, F. and K. H. Nazlin. 2006. Fish gelatin: Structure, gelling properties and interaction with egg albumen proteins. Food Hydrocolloids 20: 630-640. Bougatef A., N. A. Naima, R. P. Rozenn, L. Yves, G. Didier, B. Ahmed and N. Moncef. 2008. AngiotensinⅠ-converting enzyme (ACE) inhibitory activities of sardinelle (Sardinella aurita) by-products protein hydrolysates obtained by treatment with microbial and visceral fish serine proteases. Food Chemistry 111: 350-356. Byun, H. G., and S. K. Kim. 2001. Purification and characterization of angiotensinⅠconverting enzyme (ACE) inhibitory peptides from Alaska Pollack (Theragra chalcogramma) skin. Process Biochemistry 36: 1155-1162. Chen, G. W., J. S. Tsai and B. S. Pan. 2007. Purification of angiotensinⅠ-converting enzyme inhibitory peptides and antihypertensive effect of milk produced by protease-facilitated lactic acid. International Dairy Journal 17: 641-647. Cheung, H. S., F. L. Wang, M. A. Ondetti, E. F. Sabo and D. W. Cheung. 1980. Binding of peptide substrates and inhibitors of angiotensin-converting enzyme. Journal of Biology Chemistry 255: 401-407. Chiang, W. D., M. J. Tsou, Z. Y. Tsai and T. C. Tsai. 2006. AngiotensinⅠ-converting enzyme inhibitor derived from soy protein hydrolysate and produced by using membrane reactor. Food Chemistry 98: 725-732. Choi, H. S., H. Y. Cho, H. C. Yang, K. S. Ra and H. J. Suh. 2001. Angiotensin Ⅰ-converting enzyme inhibitor from Grifola frondosa. Food Research International 34: 177-182. Church, F. C., E. H. Swaisgood, D. H. Porter and G. L. Catignani. 1983. Spectrophotometric assay using O-phthaldialdeyhyde for deterimation of proteolysis in milk and isolated milk protein. Journal of Dairy Science 66: 1219-1227. Cornell, M. J., T. A. William, N. S. Lamango, D. Coates, P. Corvol, F. Soubrier, J. Hoheisel, H. Lehrach and R. E. Isaac. 1995. Cloning and expression of an evolutionary conserved single-domain angiotensin converting enzyme from Drosophila melanogaster. Journal of Biological Chemistry 270: 13613-13619. Costa, E. L., J. A. R. Gontijo and F. M. Netto. 2007. Effect of heat and enzymatic treatment on the antihypertensive activity of whey protein hydrolysates. International Dairy Journal 17: 632-640. Cruickshank, J., J. M. Throp and F. J. Zacharias. 1987. Benefits and potential harm of lowering high blood pressure. Lancet 1: 581-584. Cushman, D. W. and H. S. Cheung. 1971. Spectrophotometric assay and properties of the angiotensin-converting enzyme of rabbit lung. Biochemical Pharmacological 20: 1637-1648. Dahlof, B., L. H. Lindholm and L. Hansson. 1991. Morbidity and mortality in the Swedish trial in old patients with hypertension (STOP-hypertension). Lancet 338: 1281-1285. Fernandez, M., X. Liu, M. A. Wouters, S. Heyberger and A. Husain. 2001. AngiotensinⅠ-converting enzyme transition state stabilization by HIS1089: evidence for a catalytic mechanism distinct from other gluzincin metalloproteinases. Journal of Biological Chemistry 276: 4998-5004. Ferreira, S. H., D. C. Bartelt and L. J. Greene. 1970. Isolate of bradykinin- potentiating peptides from Bothrops jararaca venom. Biochemistry 9: 2583-2593. Fujita, H., K. Yokoyama and M. Yoshikawa. 2000. Classification and antihypertensive activity of angiotensinⅠ-converting enzyme inhibitory peptides derived from food protein. Journal of Food Science 65: 564-569. Gornall, A. G., C. J. Bardwill and M. M. David. 1949. Determination of serum protein by means of the biuret reaction. Journal of Biological Chemical 177: 751-766. Hsieh, P. S. and Y. H. Tai. 2003. Aqueous extract of Monascus purpureus M9011 prevents and reverses fructose-induced hypertension in rats. Journal of Agricultural and Food Chemistry 51: 3945-3950. Hsu, F. L., Y. H. Lin, M. H. Lee, C. L. Lin and W. C. Hou. 2002. Both dioscorin, the tuber storage protein of yam (Dioscorea alata cv. Tainong No.1), and its peptic hydrolysates exhibited angiotensin converting enzyme inhibitory activities. Journal of Agricultural and Food Chemistry 50: 6109-6113. Hyun, C. K. and H. K. Shin. 2002. Utilization of bovine blood plasma proteins for the production of angiotensinⅠconverting enzyme inhibitory peptides. Process Biochemistry 36: 65-71. Ichimura, T., J. Hu, D. Q. Aita and S. Maruyama. 2003. AngiotensinⅠ-converting enzyme inhibitory activity and insulin secretion stimulative activity of fermented fish sauce. Journal of Bioscience and Bioengineering. Je, J. Y., P. J. Park, H. G. Byun, W. K. Jung and S. K. Kim. 2005. Angiotensin Ⅰconverting enzyme (ACE) inhibitory peptide derived from the sauce of fermented blue mussel, Mytilus edulis. Bioresource Technology 96: 1624- 1629 . Jung, W. K., E. Mendis, J. Y. Je, P. J. Park, B. W. Son, H. C. Kim, Y. K. Choi and S. K. Kim. 2006. AngiotensinⅠ-converting enzyme inhibitory peptide from yellowfin sole (Limanda aspera) frame protein and its antihypertensive effect in spontaneously hypertensive rats. Food Chemistry 94: 26-32. Kamath, V., S. Niketh, A. Chandrashekar and P. S. Rajini. 2007. Chymotryptic hydrolysates of α-kafirin, the storage protein of sorghum (Sorghum bicolor) exhibited angiotensin converting enzyme inhibitory activity. Food Chemistry 100: 306-311. Kang, D. G., S. Lee, H. S. Lee and H. Oh. 2002. Angiotensin converting enzyme inhibitor from Cuscuta japonica Choisy. Journal of Ethnopharmarcology 83: 105-108. Kannel, W. B.. 1996. Blood pressure as a cardiovascular risk factor. Journal of the American Medicine Association 275: 1571-1576. Kilpi, E. E.-R., M. M. Kahala, J. L. Steele, A. M. Pihlanto and V. V. Joutsjoki. 2007. AngiotensinⅠ-converting enzyme inhibitory activity in milk fermented by wild-type and peptidase-deletion derivatives of Lactobacillus helveticus CNRZ32. International Dairy Journal 17: 976-984. Kim, H. M., D. R. Shin, O. J. Yoo, H. Lee and J. O. Lee. 2003. Crystal structure of Drosophila angiotensinⅠ-converting enzyme bound to captopril and lisinopril. FEBS Letters 538: 65-70. Kim, S. W., H. G. Byun, P. J. Park and F. Shahidi. 2001. AngiotensinⅠconverting enzyme inhibitory peptides purified from bovine skin gelatin hydrolysate. Journal of Agricultural and Food Chemistry 49:2992-2997. Kinoshita, E., J. Yamakoshi and M. Kikuchi. 1993. Purification and identification of an angiotensinⅠ-converting enzyme inhibitor from soy sauce. Bioscience Biotechnology Biochemistry 57(7): 1107-1110. Kondo, S., K. Tayama, Y. Tsukamoto, K. Ikeda and Y. Yamori. 2001. Antihypertensive effects of acetic acid and vinegar on spontaneously hypertensive rats. Bioscience Biotechnology Biochemistry 65: 2690-2694. Kuba, M., C. Tana, S. Tawata and M. Yasuda. 2005. Production of angiotensinⅠ-converting enzyme inhibitory peptides from soybean protein with Monascus purpureus acid proteinase. Process Biochemistry 40: 2191-2196. Li, G. H., G. W. Le, Y. H. Shi and S. Shrestha. 2004. AngiotensinⅠ-converting enzyme inhibitory peptides derived from food proteins and their physiological and pharmacological effects. Nutrition Research 24: 469-486. Li, G. H., T. Matsui, K. Matsumoto, R. Yamazaki and T. Kawazaki. 2002. Latent production of angiotensinⅠ-converting enzyme inhibitors from buckwheat protein. Journal Peptide Science 8: 267-274. López-Fandiño, R., J. Otte and J. Camp. 2006. Physiological, chemical and technological aspects of milk-protein-derived peptides with antihypertensive and ACE-inhibitory activity. International Dairy Journal 16: 1277-1293. Macours, N. and H. Korneel. 2004. Zinc-metalloproteases in insects: ACE and ECE. Insect Biochemistry and Molecular Biology 34: 501-510. Maruyama, S. and H. Suzuki. 1982. A peptide inhibitor of angiotensinⅠconverting enzyme in the tryptic hydrosylate of casein. Agricultural Biological Chemistry 46: 1393-1394. Maruyama, S., H. Hitachi, H. Takana, N. Tomizuka and H. Suzuki. 1987. Studies on the active site and antihypertensive activity of angiotensinⅠ- converting enzyme inhibitors derived from casein. Biological Chemical 51: 1581-1586. Matsui, T., H. Yukiyoshi. S. Doi, H. Sugimoto, H. Yamada and K. Matsumoto. 2002. Gastrointestinal enzyme production of bioactive peptides from royal jelly protein and their antihypertensive ability in SHR. Journal Nutritional Biochemistry 13:80-86. Megias, C., M. M. Yust, J. Pedroche, H. Lquari, J. Giron-Calle, M. Alaiz, F. Millan and J. Vioque. 2004. Purification of an ACE inhibitory peptide ahter hydrolysis of sunflower (Helianthus annuus L.) protein isolates. Journal of Agricultural and Food Chemistry 52: 1928-1932. Miguel M., M. M. Contreras, I. Recio and A. Aleixandre. 2009. ACE-inhibitory and antihypertensive properties of a bovine casein hydrolysate. Food Chemistry 112: 211-214. Miyoski, S., H. Ishikawa, T. Kaneko, F. Fukui, H. Tanaka and S. Marutama. 1991. Structure and activity of angiotensin converting enzyme inhibitors in α-zein hydrolysate. Agricultural Biological Chemistry 55: 1313-1318. Mizushima, S., K. Ohshige, J. Watanabe, M. Kimura, T. Kadowaki, Y, Nakamura, O. Tochikubo and H. Ueshima. 2004. Randomized controlled trial of sour milk on blood pressure in borderline hypertensive men. Ameriacn Journal of Hypertension 17: 701-706. Muruyama, S., H. Mitachi, H. Tanaka, N. Tomizuka and H. Suzuki. 1987. Studies on the active site and antihypertensive activity of angiotensinⅠ-converting enzyme inhibitors derived from casein. Agricultural Biological Chemistry 51: 1581-1586. Ondetti, M. A. and D. W. Cushman. 1971. Inhibition of the rennin-angiotensin system: a new approach to the therapy of hypertension. Journal of Medicine Chemistry 24: 355-361. Oscar, A. C.. 1995. Angiotensin converting enzyme inhibitors and endothelial dysfunction. AJH 8:42-44. Oshima, G., H. Shimabukuro and K. Nagasawa, 1979. Peptide inhibitors of angiotensinⅠ-converting enzyme in digests of gelatin by bacterial collagenase. Biochimica et Biophysica Acta 566: 128-137. Otte, J., S. M. Shalaby, M. Zakora, A. H. Pripp and S. A. El-Shabrawy. 2007. Angiotensin-converting enzyme inhibitory activity of milk protein hydrolysates: Effect of substrate, enzyme and time of hydrolysis. International Dairy Journal 17: 488-503. Persson, A. L. I., L. Dong and K. Persson. 2006. Effect of Panax ginseng extract (G115) on angiotensin-converting enzyme (ACE) activity and nitric oxide (NO) production. Journal of Ethnopharmacology 105: 321-325. Pozo-Bayón, M. Á., J. M. Alcaíde, M. C. Polo and E. Pueyo. 2007. AngiotensinⅠ-converting enzyme inhibitory compounds in white and red wines. Food Chemistry 100: 43-47. International Dairy Journal 16: 1277-1293. Psaty, B. M., S. R. Hechbert and T. D. Koepsell. 1995. The risk of myocardial infarction associated with antihypertensive drug therapy. JAMA 274: 620-625. Quirós, A., M. Ramos, B. Muguerza, M A. Delgado, M. Miguel, A. Aleixandre and I. Recio. 2007. Identification of novel antihypertensive peptides in milk fermented with Enterococcus faecalis. International Dairy Journal 17: 33-41. Rasheva, T. V., T. S. Nedeva, J. N. Hallet and V. Kujumdzieva. 2003. Characterization of a non-pigment producing Monascus purpureus mutant strain. Antonie van Leeuwenhoek 83: 333-340. Reddy, G. K. and C. S. Enwemeka. 1996. A simplified method for the analysis of hydroxyproline in biological tissue. Clinical Biochemical 29: 225-229. Saiga, A., T. Okumura, T. Makihara, S. Katsuta, T. Shimizu, R. Yamada and T. Nishimura.2003 AngiotensinⅠ-converting enzyme inhibitory peptides in a hydrolyzed chicken breast muscle extract. Journal of Agricultural and Food Chemistry 51: 1741-1745. Satoshi, T., T. Matoba and S. Eguchi. 1996. AngiotensinⅡtype 2 receptor inhibits cell proliferation and activation tyrosine phosphatase. Hypertension 28: 916. Saito, Y., K. Wanezaki, A. Kawato and S. Imayasu. 1994. Structure and activity of angiotensinⅠconverting enzyme inhibitory peptides from sake and sake lee. Bioscience Biotechnology and Biochemistry 58: 1767-1771. Soda, M. E., M. J. Desmazesd, and J. L. Bergere. 1978. Peptide hydrolases of Lactobacillus casei: isolation and general properties of various peptides activity. Journal of Dairy Research 45: 445-455. Suetsuna, K.. 1998. Purification and identification of angiotensinⅠ-converting enzyme inhibitors from the red alga Porphyra yezoensis. Journal of Marine Biotechnology 6: 163-167. Tatei, K., H. Cai, Y. T. Ip and M. Levine. 1995. Race: a Drosophola homolog of the angiotensin-converting enzyme. Mechanisms of Development 51: 157-168. Tsai, J. S., T. J. Chen, B. S. Pan, S. D. Gong and M. Y. Chung. 2008. Antihypertensive effect of bioactive peptides produced by protease-facilitated lactic acid fermentation of milk. Food Chemistry 106: 552-558 Tseng, Y. Y., M. T. Chen and C. F. Lin. 2000. Growth, pigment production and protease activity of Monascus purpureus as affected by salt, sodium nitrite, polyphosphate and various sugars. Journal of Applied Microbiology 88: 31-37. Wang J., J. Hu, J. Cui, X. Bai, Y. Du, Y. Miyaguchi and B. Lin. 2008. Purification and identification of a ACE inhibitory peptide from oyster protein hydrolysate and the antihypertensive effect of hydrolysate in spontaneously hypertensive rats. Food Chemistry 111: 302-308. Wu, J. and X. Ding. 2001.Hypotensive and physiological effect of angiotensin converting enzyme inhibitory peptides derived from soy bean protein on spontaneously hypertensive rats. Journal of Agricultural and Food Chemistry 49: 501-506. Wu J., E. A. Rotimi and D. M. Alister. 2008. Purification of angiotensinⅠ-converting enzyme-inhibitory peptides from the enzymatic hydrolysate of defatted canola meal. Food Chemistry 111: 942-950. Wu, J. and X. Ding. 2002. Characterization of inhibition and stability of soy-protein-derived angiotensinⅠ-converting enzyme inhibitory peptides. Food Reasearch International 35: 367-375. Wu, L. C. and Y. D. Hang. 1998. Purification and characterization of acid protease from Neosartorya fischeri var. spinosa IBT 4872. Applied Microbiology 27: 71-75. Xie, M. H. 1990. Progress of research on angiotensin converting enzyme inhibitors. Chinese Journal of Pharmacological (in Chinese) 21: 277-285. Yoshii, H., N. Tachi, R. Ohba, O. Sakamura, H. Takeyama and T. Itani. 2001. Antihypertensive effect of ACE inhibitory oligopeptides from chicken egg yolks. Comparative Biochemistry and Physiology Part C 128: 27-33. Zhao Y., B. Li, Z. Liu, S. Dong, X. Zhao and M. Zeng. 2007. Antihypertensive effect and purification of an ACE inhibitory peptide from sea cucumber gelatin hydrolysate. Process Biochemistry 42: 1586-1591.
摘要: 
本試驗由雞腳中萃取天然血管收縮素轉化酶(angiotensin converting enzyme,ACE)抑制劑,藉由不同雞腳:R.O.水之基質比(1:3、1:4及1:5,w/w)、水解溫度(55、65及75℃)及水解時間(30、60、90及120分鐘)進行水解,並測定雞腳水解產物之羥脯胺酸(hydroxyproline,Hyp.)含量、ACE抑制活性及蛋白質濃度分析。接著以不同酵素(Monascus purpureus acid proteinase與alcalase)、酵素/受質比(分別為1/5、1/10與1/50、1/100)及酵素水解時間(0、6、12、24、36及48小時)進行酵素水解,在in vitro試驗中判斷其ACE抑制活性胺基酸組成,並進一步選擇表現較佳之雞腳酵素水解產物於in vivo試驗中探討灌飼於自發性高血壓(SHR)大鼠後其體內降血壓之能力。
結果顯示:Hyp.含量分析方面,雞腳:R.O.水=1:3或1:4且於較高溫度如65或75℃下水解90~120分鐘皆可得較高之Hyp.的產量。ACE抑制活性分析方面,雞腳:R.O.水=1:3且於75℃水解90分鐘有最佳ACE抑制活性(19.62%)。蛋白質濃度分析方面,雞腳:R.O.水=1:3且於75℃水解90分鐘有顯著最高蛋白質濃度(105.13mg/mL)。雞腳酵素水解產物方面,經Monascus purpureus acid proteinase或alcalase水解後其ACE抑制活性皆可顯著提高為未經酵素水解處理組的2倍或4.3倍,分別為39.30%或85.03%。胺基酸組成方面,雞腳酵素水解產物含量最多之胺基酸皆為glycine,其次皆為glutamate,此外,aspartate、proline、alanine、lysine及arginine皆為含量豐富之胺基酸組成之一。於in vivo動物試驗之立即性收縮壓的變化方面,灌飼紅麴酸性蛋白酶處理組及鹼性蛋白酶處理組之SHR公鼠其收縮壓皆於灌飼後1小時即顯著下降,並分別於灌飼後第5及1小時有最大降血壓值,與控制組相對之下分別降低27.67及36 mmHg。長效性收縮壓之變化方面,連續灌飼6週紅麴酸性蛋白酶處理組之SHR公鼠其收縮壓至第2週開始顯著低於控制組(p<0.05),並於第5週收縮壓開始回升並維持穩定。連續灌飼6週鹼性蛋白酶處理組之SHR公鼠其收縮壓於第1週即顯著低於控制組(p<0.05),並於第4週收縮壓開始回升並維持穩定。大鼠體重、各器官(心、肝、腎、肺)重及心臟佔體重百分率方面,SHR公鼠與正常血壓(WKY)公鼠經長期灌飼雞腳酵素水解產物後其體重、肝臟重及腎臟重於各試驗組間並無顯著差異;心臟重及心臟佔體重百分率方面,SHR公鼠則較WKY公鼠有稍高之數值,但差異並不顯著;在肺臟重方面,則以灌飼鹼性蛋白酶之SHR公鼠有最高的數值。

The purposes of this experiment were to extract natural ACE inhibitors from chicken feet by various chicken feet/R.O. ratio of matrix ( 1:3、1:4 and 1:5),hydrolysis temperatures (55, 65 and 75 ℃) and hydrolysis time (30, 60, 90 and 120 minutes), and to determine the hydroxyproline (Hyp.) content、ACE inhibitory activity and protein concentration of chicken feet hydrolysates, then, two enzymes (Monascus purpureus acid proteinase and alcalase), enzyme/substrate (E/S) ratio (1/5, 1/10 and 1/50, 1/100, respectively) and hydrolysis time (0, 6, 12, 24, 36 and 48 hours) were used to hydrolyze chicken feet hydrolysates. The characteristics of chicken feet enzymatic hydrolysates were evaluated by ACE inhibitory activity and amino acid composition. Finally, the best ACE inhibitory of chicken feet enzymatic hydrolysates were evaluated to decrease blood pressure of spontaneously hypertensive rats by oral administration for short time (12 hours) and long time (6 weeks).
The results showed that: In Hyp. content aspect, a higher Hyp. content was obtained when chicken foot/R.O. ratio = 1/3 or 1/4 of matrix was extracted at 65 or 75 ℃ for 90~120 minutes. ACE inhibitory activity and protein concentration aspect, the chicken feet hydrolysates from feet/R.O ratio = 1/3 of matrix hydrolyzed at 75℃ for 90 minutes has the highest value (19.62%, 105.13mg/mL, individually). The ACE inhibitory activity was improved up to 2 times (39.30%) or 4.3 time (85.03%), respectively, by Monascus purpureus acid proteinase or alcalase. The amino acid composition aspect, the most amino acid content of all chicken feet enzymatic hydrolysates is glycine, then in order is glutamate, aspartate, proline, alanine, lysine and arginine. Systolic blood pressure (SBP) aspect, SBP of SHR male rats declined significantly after oral feeding chicken feet hydrolysates treated by Monascus purpureus acid proteinase for 5 hours or by alcalase for 1 hour, and a high reduction value of SBP was 27.67 and 36 mmHg, respectively. In long time feeding, after feeding chicken feet hydrolysates treated by Monascus purpureus acid proteinase for 6 weeks, the value of SBP was significantly less than the control from the second to the sixth week. After feeding chicken feet hydrolysates treated by alcalase for 6 weeks, the value of SBP also was significantly less than the control during all feeding period. In this study, there is no significantly different for body weight, liver weight and kidney weight between SHR male rats and WKY male rats after feeding the two chicken feet enzymatic hydrolysates for 6 weeks. SHR male rats have higher value than WKY male rats in heart weight and the heart/body weight ratio, but there is no significantly different in chicken feet hydrolysates treated by enzymes. However, the SHR male rats feeding chicken feet hydrolysates treated by Monascus purpureus acid proteinase for 6 weeks has the highest value in lung weight in this research.
URI: http://hdl.handle.net/11455/25017
其他識別: U0005-2108200812553800
Appears in Collections:動物科學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.