Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/2502
DC FieldValueLanguage
dc.contributor陳志敏zh_TW
dc.contributor劉明山zh_TW
dc.contributor.advisor簡瑞與zh_TW
dc.contributor.author鐘寶灨zh_TW
dc.contributor.authorChung, Bao-ganen_US
dc.contributor.other中興大學zh_TW
dc.date2011zh_TW
dc.date.accessioned2014-06-05T11:43:27Z-
dc.date.available2014-06-05T11:43:27Z-
dc.identifierU0005-2208201018291600zh_TW
dc.identifier.citation[1] Tegenfeldt JO, Prinz C, Cao H, Huang RL, Austin RH, Chou SY, Cox EC,St- um JC (2004) Micro-and nanofluidics for DNA analysis. Analytical and Bioanalyt ical Chemistry 378: 1678-1692. [2] Mohamadi MR, Mahmoudian L, Kaji N, Tokeshi M, Chuman H, Baba Y (2006) Nanotechnology for genomics & proteomics. Nano Today 1: 38-45. [3] Schmuhl R, Keizer K, vanadenaBerg A, tenaElshof J, Blank D (2004) Controlling the transport of cations through permselective mesoporous alumina layers byman- ipulation of electric field and ionic strength. Journal of colloid and interface science 273: 331-338. [4] Wang Y, Pant K, Chen Z, Wang G, Diffey W, Ashley P, Sundaram S (2009) Nue- rical analysis of electrokinetic transport in micro-nanofluidic interconnect precon- centrator in hydrodynamic flow. Microfluidics and Nanofluidics 7:683-696. [5] Wei C, Bard A, Feldberg S (1997) Current rectification at quartz nanopipet electr- odes. Anal Chem 69: 4627-4633. [6] Siwy Z (2006) Ion-current rectification in nanopores and nanotubes with broken symmetry. Advanced Functional Materials 16: 735-746. [7] Siwy Z, Fuli ski A (2004) A nanodevice for rectification and pumping ions. American Journal of Physics 72: 567. [8] Liu Q, Wang Y, Guo W, Ji H, Xue J, Ouyang Q (2007) Asymmetric properties of ion transport in a charged conical nanopore. Physical Review E 75: 51201. [9] Kosińska I, Goychuk I, Kostur M, Schmid G, Hanggi P (2008) Rectification in synthetic conical nanopores: A one-dimensionalPoisson-Nernst-Planck model.Physical Review E 77: 31131. [10] Cervera J, Schiedt B, Ramirez P (2005) A Poisson/Nernst-Planck model for ionic transport through synthetic conical nanopores. EPL (Europhysics Letters) 71: 35-41. [11]White H, Bund A (2008) Ion current rectification at nanopores in glassmembranes. Langmuir 24: 2212-2218. [12]Qian S, Joo S, Ai Y, Cheney M, Hou W (2009) Effect of linear surface charged non-uniformities on the electrokinetic ionic current rectification in conical nanopores. Journal of colloid and interface science 329: 376-383. [13] Vlassiouk I, Smirnov S, Siwy Z (2008) Nanofluidic Ionic Diodes. Comparison of Analytical and Numerical Solutions. ACS Nano 2: 1589-1602. [14] Ramirez P, Gomez V, Cervera J, Schiedt B, Mafe S (2007) Ion transport and sele- ctivity in nanopores with spatially inhomogeneous fixed charge distributions. The Journal of chemical physics 126: 194703. [15] Vlassiouk I, Smirnov S, Siwy Z (2008) Ionic Selectivity of Single Nanochannels. Nano Letters 8: 1978-1985. [16]Daiguji H (2010) Ion transport in nanofluidic channels. Chemical Society Reviews 39: 901-911. [17]Karnik R, Fan R, Yue M, Li D, Yang P, Majumdar A (2005) Electrostatic control of ions and molecules in nanofluidic transistors. Nano Lett5: 943-948. [18] Schoch R, Han J, Renaud P (2008) Transport phenomena in nanofluidics. Review of Modern Physics 80: 839-883. [19]Kim S, Wang Y, Lee J, Jang H, Han J (2007) Concentration polarization and nonlinear electrokinetic flow near a nanofluidic channel. Physical review letters 99: 44501. [20]Rubinstein I, Zaltzman B (2000) Electro-osmotically induced convectionat a permselective membrane. Physical Review E 62: 2238-2251. [21]Chein R, and Chung B (2009) Electrokinetic transport inmicro-nanofluidic systems with sudden-expansion contraction cross sections. 2009 ASME Micro/nano heat transfer internation conferenceShanghai, China. [22]Xie Y, Wang X, Xue J, Jin K, Chen L, Wang Y (2008) Electric energy generation in single track-etched nanopores. Applied Physics Letters 93: 163116. [23]Stein D, Kruithof M, Dekker C (2004) Surface-charge-governed iontransport in nanofluidic channels. Physical review letters 93: 35901. [24]Schoch R, Renaud P (2005) Ion transport through nanoslits dominated by theeffective surface charge. Applied Physics Letters 86: 253111.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/2502-
dc.description.abstract本研究使用數值方法求解Poisson、Nernst-Planck與Navier-Stokes來探討奈米孔道電流之特性。物理模型為一奈米圓管,其出入口處各連接一微米流道。在不同的電解液濃度與電壓下,探討sidewall 帶電情形在不同壁面電荷密度分佈與電滲流下之影響。 由結果可發現,當奈米圓管之壁面電荷密度為常數時,電解液濃度在10-4M以下,sidewall帶電情形會明顯影響到圓管中離子的傳輸。當奈米圓管帶有線性分布壁面電荷密度時,Sidewall帶電情形影響更劇烈。在電解液濃度為10-2M時,即可由電流-電壓曲線觀察到。此結果主要是由於在奈米圓管出入口周圍的濃度極化所導致。Sidewall帶電時,則會導致濃度極化增強,而改變管內離子的傳輸情形。在不同sidewall長度、壁面電荷密度與外加電位差時,由濃度-電導圖可知,sidewall帶電時電導之差異較為顯著。zh_TW
dc.description.abstractIn this study, the ionic transport characteristics through a cylindrical nanochannel with charged entrance and exit and linearly varied surafce charge density along the nanochannel wall is numerically investigated. The ends of the nanochannel was connected with the microchanels which were regarded as the reservoirs. The Nernst-Planck equation that governed the ionic distribution was solved along with the Poission equation and Navier-Stokes equations. Based on the nuemrical resulted of current-voltage curves obtained, it was found that the charge entrance can enhance the concentraion polarization in the anodic side of the nanochannel as compared with the uncharged entrance case. As comapred with conventional conducting membrane, no limiting current regime can be obserevd when the chraged entrance is included. Instead the current varies quradratically with the applied voltage. Current rectification can be observed for nanochannel with and without charged entrance and exit when channel wall has linearly varied surface charge density. The numerical results indicated that the current rectification factor is higher for the nanochannel with charged entrance than that without charged entrance. The current rectification factor also found to increase with decrease of bulk concentration and increases of the surface charge density magnitude, slope, and charged entrance size.en_US
dc.description.tableofcontents誌謝 I 摘要 II Abstract III 目 錄 IV 圖目錄 V 第一章緒論 6 1.1前言 6 1.2奈米管道中離子分佈特性 6 1.3電流放大現象(Ionic Current Rectification, IR) 7 1.4濃度極化 8 1.5奈米管道之電導 8 1.6研究動機 9 第二章物理模型及數學模式 10 2.1物理模型 10 2.2數學模式 10 第三章數值模式 12 3.1數值分析 12 3.2數值評估與網格建立 13 第四章結果與討論 14 4.1數值模式驗證 14 4.2 Sidewalls帶電情形對奈米圓管離子輸送之影響 15 4.3電滲流對奈米圓管離子輸送之影響 17 4.4壁面電荷密度分佈對奈米圓管離子輸送之影響 18 4.5 Sidewall長度對奈米圓管離子輸送之影響 20 4.6壁面電荷密度大小對奈米圓管離子傳輸之影響 20 4.7外加電位差對sidewall帶電情形之電導影響 20 第五章總結與未來展望 22 參考文獻 23 圖表 25zh_TW
dc.language.isoen_USzh_TW
dc.publisher機械工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2208201018291600en_US
dc.subjectnanoporeen_US
dc.subject奈米孔道zh_TW
dc.subjectI-V curveen_US
dc.subjectionic currenten_US
dc.subjectI-V curveen_US
dc.subjectsidewalls effecten_US
dc.subject電流-離子電流zh_TW
dc.subject電流-電壓曲線zh_TW
dc.subject邊壁影響zh_TW
dc.title奈米孔道電流特性之數值探討zh_TW
dc.titleNumerical study on the Ionic current characteristic in nanoporesen_US
dc.typeThesis and Dissertationzh_TW
item.fulltextno fulltext-
item.languageiso639-1en_US-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
Appears in Collections:機械工程學系所
Show simple item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.