Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/2505
標題: 工具機冷卻系統之耦合效應探討-有限元素法
Investigation on the Coupled Effect of Cooling System in Machine Tools by the Finite Element Method.
作者: 曾鵬引
Tseng, Peng-Ying
關鍵字: Machine tools;工具機;Hollow screw;Coolant;Finite element;Heat convection;Coupled effect;中空導螺桿;冷卻液;有限元素;對流分析;耦合效應
出版社: 機械工程學系所
引用: [1] 廖子恩,"滾珠螺桿溫升熱變位量測之研究",國立中正大學碩士論文,1999。 [2] 鄧應揚,"工具機進給系統之熱傳分析",國立中正大學碩士論 文,2000。 [3] 屈岳陵,"滾珠螺桿高速進給下熱抑制探討",機械月刊,第28卷,第4期,4月號,52-56,2002。 [4] Bryan, J., "International status of thermal error research", Annals of the CIRP, Vol.16, No.1,pp. 203, 1968. [5] Wilson, E.L., Bathe, K.J. and Peterson, F.E., "Finite element Analysis of Linear and Nonlinear Heat Transfer", Nuclear Engineering and Design, Vol.29, pp.110-124,1974. [6] Heinrich, J.C., Zienkiewicz, O.C., "The finite element method and ”upwind” techniques in numberical solution of convection dominated flow problem", Annals of the CIRP, Vol.34, pp.203, 1979. [7] YU, C.C., Heinrich, J.C., "Petrov-Galerkin methods for the time-depent convective transport equation", International journal for numerical methods in engineering, Vol.23, pp.883-901, 1986. [8] YU, C.C., Heinrich, J.C., "Petrov-Galerkin methods for multidimensional, time-dependent, convective-diffusion equations", International journal for numerical methods in engineering, Vol.24, pp.2201-2215, 1987. [9] Gomini, G., Giudice, S. Del., "A physical interpretation of convectional finite element formulation of conduction-type problems", International journal for numerical methods in engineering, Vol.32, pp.559-569, 1991. [10] Giudice, S. Del., Gomini, G., Nonino, C., "A physical interpretation of conservative and non- conservative finite element formulation of convection-type problems ", International journal for numerical methods in engineering, Vol.35, pp.709-727, 1992. [11] Gomini, G., Saro, O., Manzan, M., "A physical approach to finite-element of coupled conduction and convection", Numberical heat transfer, Part B, Vol.24, pp.243-261, 1993. [12] Gomini, G., Cortella, G., Saro, O., "Finite element analysis of coupled conduction and convection in refrigerated transport", Int. J. Refrig, Vol.18, No. 2, pp.123-131, 1995. [13] Li, Xikui, Wu, Wenhua, Zienkiewicz, O.C., "Implicit characteristic Galerkin method for convection-diffusion equations", International journal for numerical methods in engineering, Vol.47, pp.1689-1708, 2000. [14] Al-khoury, R., Bonnier, P.G., Brinkgreve, R. B. J., "Efficient finite element formulation for geothermal heating systems. Part 1: Steady state", International journal for numerical methods in engineering, Vol.63, pp.988-1013, 2005. [15] Al-khoury, R., Bonnier, P.G., "Efficient finite element formulation for geothermal heating systems. Part 2: Transient", International journal for numerical methods in engineering, Vol.67, pp.725-745, 2006. [16] Felippa, Carlos A., Park, K.C., Farhat, Charbel,"Partitioned analysis of coupled mechanical systems", Computer Methods in Applied Mechanics and Engineering, Vol.190, pp.3247-3270, 2001. [17] Michler, C., Hulshoff, S.J., Brummelen, van E.H., Borst, de R., " A monolithic approach to fluid–structure interaction ", Computers and fluids, Vol.33, pp.839-848, 2004. [18] Nakshatrala, P. B., Nakshatrala, K. B., Tortorelli, D. A. "A time-staggered partitioned coupling algorithm for transient heat conduction", International journal for numerical methods in engineering, Vol.78, pp.1387-1406, 2009. [19] Kim, S.K., CHO, D.W., " Real-time estimation of temperature distribution in a ball-screw system", International journal for Machine Tools and Manufacture, Vol.37, No.4, pp.451-464, 1997. [20] Lewis, R.W., Nithiarasu, P., Seetharamu, K.N., " Fundamentals of the Finite Element Method for Heat and Fluid Flow", Wiley, New York, 2004. [21] Munson, Bruce R., Young, Donald F., Okiishi, Theodore H., " Fundamentals of fluid mechanics", Wiley, New York, 2006. [22] Weck, M., Zangs, L., " Computing the thermal Behavior of Machine Tool Using the Finite Element Method Possibilities and Limitations", MTDR, Vol.16, pp.185-194, 1975.
摘要: 
高速化與高精密化是工具機近年來的發展趨勢。而改善進給系統加工定位精度的關鍵,在於有效地抑制導螺桿在高速進給時所引起的溫升效應。
本研究以雙相耦合有限元素法來處理固體結構與流體結構對流熱傳的三維問題。探討工具機中之冷卻液通過中空導螺桿之冷卻流道,以強制對流方式抑制溫升的現象。
本文依據實際使用狀況,將中空導螺桿以及冷卻液,分別建立成三維實體有限元素模式,並根據冷卻液流動的條件設定適當的動態邊界條件。接著利用FEAST有限元素分析軟體,藉由固體元素與流體元素熱傳耦合的分析模式,來探討具冷卻液之中空導螺桿的動態熱傳現象。並研究不同的冷卻液流率對於導螺桿溫升的影響。
透過分析結果與實驗數據比較溫升曲線的趨勢,可確知本研究所具有的重要參考價值。根據分析結果,可以提供工具機冷卻系統,於將來概念設計時可能改善之方案,進而提升冷卻系統抑制溫升的效能。

In recent years, requirement of high speed and high precision feature becomes much more important in the development of machine tools. One of the points in improvement of machining accuracy, is the suppression of heat generated during machine operation.
In this report, a set of three-dimensional finite element coupling equations is derived and used to study the effect of heat transfer between the solid structure and the fluid phase. In consideration of the forced convection, the fluid flow with various flow rates of coolant through the cooling tunnel in hollow screw are especially considered. Based on a real hollow screw and coolant, three-dimensional finite element models with imposition of dynamical, suitable boundary conditions, are built. The finite element software system, FEAST, under 64 bits data precision, is used.
The computational results here, comparing with experimental data, tell that the method derived in the study is significant. Some suggestion related to the temperature suppression in the cooling system can thus be made.
URI: http://hdl.handle.net/11455/2505
其他識別: U0005-2210201013024400
Appears in Collections:機械工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.