Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/2507
標題: 整合型氧化鋅微氨氣感測器
Integrated micro ammonia sensors with zinc oxide
作者: 楊閔智
Yang, Ming-Zhi
關鍵字: CMOS-MEMS;CMOS-MEMS;zinc oxide;micro ammonia sensor;氧化鋅;氨氣微感測器
出版社: 機械工程學系所
引用: [1]中華機械網,氣體感測器發展方向的深度分析,2008。 [2]王瑩,急性重度氨中毒15例臨床分析,中華勞動衛生職業病雜誌,1990。 [3]陳一誠、劉旭禎,一氧化碳氣體感測技術,工業材料雜誌,第227期 (1995), 69–80。 [4]H. Tang, M. Yan, H. Zhang, S. Li, X. Ma, M. Wang, and D. Yang, “A selective NH3 gas sensor based on Fe2O3–ZnO nanocomposites at room temperature,” Sensors and Actuators:B, 114 (2006), 910–915. [5]M.S. Wagh, G.H. Jain, D.R. Patil, S.A. Patil, and L.A. Patil, “Modified zinc oxide thick film resistors as NH3 gas sensor,” Sensors and Actuators:B, 115 (2006), 128–133. [6]L.H. Nguyen, T.V. Phi, P.Q. Phan, H.N. Vu, C. Nguyen-Duc, and F. Fossard, “Synthesis of multi-walled carbon nanotubes for NH3 gas detection,” Physica E, 37 (2007), 54–57. [7]B. Karunagaran, P. Uthirakumar, S. J. Chung, S. Velumani, and E. K. Suh, “TiO2 thin film gas sensor for monitoring ammonia,” Materials Characterization, 58 (2007), 680–684. [8]H. Tai, Y. Jiang, G. Xie, J. Yu, X. Chen, and Z. Ying, “Influence of polymerization temperature on NH3 response of PANI/TiO2 thin film gas sensor,” Sensors and Actuators:B, 129 (2008), 319–326. [9]N.V. Hieu, L.T.B. Thuy, and N.D. Chien, “Highly sensitive thin film NH3 gas sensor operating at room temperature based on SnO2/MWCNTs composite,” Sensors and Actuators:B, 129 (2008), 888–895. [10]V. Srivastava, and K. Jain, “Highly sensitive NH3 sensor using Pt catalyzed silica coating over WO3 thick films,” Sensors and Actuators:B, 133 (2008), 46–52. [11]Q. Qi, T. Zhang, L. Liu, X. Zheng, and G. Lu, “Improved NH3, C2H5OH, and CH3COCH3 sensing properties of SnO2 nanofibers by adding block copolymer P123,” Sensors and Actuators:B, 141 (2009), 174–178. [12]N.V. Hieu, N.Q. Dung, P.D. Tam, T. Trungc, and N.D. Chien, “Thin film polypyrrole /SWCNTs nanocomposites-based NH3 sensor operated at room temperature,” Sensors and Actuators:B, 140 (2009), 500–507. [13]L.V. Thong, N.D. Hoa, D.T.T. Le, D.T.Viet, P.D. Tamb, A-T Le, and N.V. Hieu, “On-chip fabrication of SnO2-nanowire gas sensor : the effect of growth time on sensor performance,” Sensors and Actuators:B, 146 (2010), 361–367. [14]Y. Wang, Q. Mu, G. Wang, and Z. Zhou, “Sensing characterization to NH3 of nanocrystalline Sb-doped SnO2 synthesized by a nonaqueous sol–gel route,” Sensors and Actuators:B, 145 (2010), 847–853. [15]張恒嘉、蔡木村,以 Sol-Gel 法製備奈米晶型氧化鋅之特性,國立虎尾科技大學光電與材料學系,雲林、台灣,2006。 [16]T.J. Hsueh, I.W. Chen, S.J. Chang, S.F. Wang, C.L. Hsu, Y.R. Lin, T.S. Lin, and I.C. Chene, “ZnO nanowire-based CO sensors prepared on patterned ZnO:Ga/SiO2/Si templates,” Sensors and Actuators:B, 125 (2007), 498–503. [17]Z. Liu, T. Yamazaki, Y. Shen, T. Kikuta, N. Nakatani, and Y. Li, “O2 and CO sensing of Ga2O3 multiple nanowire gas sensors,” Sensors and Actuators:B, 129 (2008), 666–670. [18]H.W. Ryua, B.S. Park, S.A. Akbar, W.S. Lee, K.J. Hong, Y.J. Seo, D.C. Shin, J.S. Park, and G.P. Choi, “ZnO sol–gel derived porous film for CO gas sensing,” Sensors and Actuators:B, 96 (2003), 717–722. [19]C. Liangyuan, L. Zhiyong, B. Shouli, Z. Kewei, L. Dianqing, C. Aifan, and C.C. Liu, “Synthesis of 1-dimensional ZnO and its sensing property for CO,” Sensors and Actuators:B, 143 (2009), 620–628. [20]A. Somiya, K. Hishinuma, and T. Akiba, “A new materials processing hydrothermal processing,” Bull. Mater. Sci, 18 (1995), 811–818. [21]仲維卓、劉光照、施爾畏,在熱液條件下晶體的生長基元與晶體形成機理,中國科學(B),1994。 [22]李汶軍、施爾畏、仲維卓、鄭燕青、殷之文,水熱合成中負離子配位多面體生長基元模型與粉體的晶粒粒度,硅酸鹽學報,1999。 [23]J. Ding, T.J. Mcavoy, and R.E. Cavicchi, “Semancik, Surface state trapping model for SnO2-based microhotplate sensors,” Sensors and Actuators:B, 77 (2001), 597–631. [24]劉茂誠,磁偶合對堆疊IC的影響與應用,博士論文,國立中興大學機械工程學系,台中,台灣,2009。 [25]莊達人,VLSI 製造技術,高立圖書有限公司,台北市,台灣,2000。 [26]陳彥崎,整合型氧化鈷微濕度感測器與微一氧化碳感測器,碩士論文,國立中興大學機械工程學系,台中,台灣,2009。 [27]呂柏緯,無線傳輸的微壓力感測器,碩士論文,國立中興大學機械工程學系,台中,台灣,2009。 [28]詹熾樺,以導電高分子-聚苯胺製作整合型微氨氣感測器,碩士論文,國立中興大學機械工程學系,台中、台灣,2008。
摘要: 
本研究以CMOS-MEMS的技術製作整合型氧化鋅微氨氣感測器,並利用水熱法製備感測薄膜氧化鋅,不僅製備方法容易,而且成本低廉,在室溫下對氨氣亦有良好的靈敏度。此微氨氣感測器的感測電極結構為多晶矽繞線,利用後製程處理將二氧化矽犧牲層移除,使感測電極裸露出來,再將氧化鋅披覆在電極上,藉由燒結使薄膜成型。當氧化鋅吸附或釋放氨氣時,使感測薄膜內部載子濃度改變,透過自然氧化層,間接影響感測電極產生電阻變化,並整合運算放大器將電阻變化轉變為電壓輸出,有效將輸出訊號放大,藉此量測環境中的氨氣濃度。微氨氣感測器的感測區總面積為640×400 μm2,而感測電極的電阻對氨氣的量測部分,於室溫下當通入0~50 ppm濃度的氨氣,其電阻值由54.817 kΩ上升至56.093 kΩ,總變化量為1.276 kΩ,對50 ppm的氨氣濃度,反應與回復時間為39秒、60秒;整合電路後,輸出電壓與相對氨氣濃度的量測部分,於室溫下當通入0~50 ppm濃度的氨氣,其輸出電壓由616.98 mV上升至690.54 mV,總變化量為73.56 mV,感測靈敏度為1.4712 mV/ppm。

The study presents a micro ammonia sensor integrated with readout circuit, manufactured by the commercial 0.35 μm complementary metal oxide semiconductor process. Zinc oxide prepared by the hydrothermal method is adopted as the ammonia sensing film. The advantages of the ammonia micro sensor are easy to prepared, low cost and high sensitivity at room temperature. The micro ammonia sensor, which is a polysilicon resistive type sensor. The post-process is used to remove the sacrificial layer, and to expose the sensing region. The zinc oxide is coated on the sensing region, and then the film is sintered. When the zinc oxide exposure to ammonia gas, the film absorbs ammonia gas leading to change the concentration of the irons. The reaction leads to disappearance of change carriers and an increase in the resistance. The readout circuit inverts, the resistance of the gas sensor into the voltage output. The experimental results show that the sensing resistor of the sensor increases from 54.817 kΩ to 56.093 kΩ as the ammonia gas concentration changes from 0 ppm to 50 ppm at room temperature. The sensitivity of the ammonia sensor is about 1.4712 mV/ppm, and the response/recovery times were 39/60s at 50 ppm ammonia concentration, respectively.
URI: http://hdl.handle.net/11455/2507
其他識別: U0005-2307201017361400
Appears in Collections:機械工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.