Please use this identifier to cite or link to this item:
標題: 飼糧精胺酸與離胺酸之比例及添加碳酸氫鈉對白羅曼鵝生長性能之影響
Effects of Different Levels of Dietary Arginine:Lysine Ratio and Sodium Bicarbonate Supplementation on Growth Performance in White Roman Geese
作者: 許忠民
Hsu, Chung-Min
關鍵字: Arginine:lysine ratio;精胺酸與離胺酸比例;sodium bicarbonate;white roman geese;碳酸氫鈉;白羅曼鵝
出版社: 動物科學系所
引用: 白火城、黃森源、林仁壽。1996。家畜臨床血液生化學。立宇出版社,台南市。 邱作相。1997。生長鵝之血液成分變化。碩士論文。國立中興大學,台中市。 李美珠。1988。日糧中添加碳酸氫鈉對乳山羊泌乳及瘤胃性狀之影響。碩士論文。國立中興大學,台中市。 何敏夫。2001。血液學。合記圖書出版社,台北市。 林炳宏。1995。高溫環境下飼糧添加抗壞血酸對白肉雞免疫反應之影響。碩士論文。國立中興大學,台中市。 季培元。1984。家禽解剖生理學。國立編譯館,台北市。 洪平。1987。飼料原料要覽。作伙逗陣雜誌社,台南市。 姜樹興。2009。動物營養學原理。華香園出版社,台北市。 張文章。2007。醫護生物化學精義。藝軒圖書出版社,台北縣。 許振忠。2009。家禽學特論。國立中興大學,台中市。 黃錫文。1992。環境溫度對台灣土雞生產性能之影響。碩士論文。國立中興大學,台中市。 臺灣飼料成分手冊。1987。行政院農業委員會畜產試驗所,台南縣。 飼料化驗分析技術手冊(增修版)。2000。行政院農業委員會畜產試驗所,台南縣。 蔡侑男。1993。環境溫度對台灣土雞產蛋性狀、肝臟脂質蓄積與脂質合成相關酵素活性之影響。碩士論文。國立中興大學,台中市。 潘淑芬。2003。醫學生物化學。藝軒圖書出版社,台北縣。 劉福文。2001。環境溫度與飼糧中添加維生素E或抗壞血酸對台灣土雞脂質代謝之影響。碩士論文。國立中興大學,台中市。 Agricultural Research Council. 1975. The Nutrient Requirements of Farm Livestock, no. 1 Poultry. London: HM Stationery Office. Ahmad, T., T. Mushtaq, M. A. Khan, M. E. Babar, M. Yousaf, Z. U. Hasan, and Z. Kamran. 2008. Influence of varying dietary electrolyte balance on broiler performance under tropical summer conditions. J Anim Physiol Anim Nutr. 93:613-621. Ahmad, T., M. Sarwar, Mahr-un-Nisa, Ahsan-ul-Haq, Zia-ul-Hasan. 2005. Influence of varying sources of dietary electrolytes on the performance of broilers reared in a high temperature environment. Anim. feed Sci. Technol. 120:277-298. Ait-Boulahsen, A., J. D. Garlich, and F. W. Edens. 1989. Effect of fasting and acute heat-stress on body temperature, blood acid-base and electrolyte status in chickens. Comp. Biochem. Physiol. 94(4):683-687. Akiba, Y., K. Takahashi, M. Kimura, S. I. Hirama, and T. Matsumoto. 1983. The influence of environment temperature, thyroid status and synthetic oestrogen on the induction of fatty liver in chicks. Br. Poult. Sci. 24:71-80. Altan, O., A. Pabuccuoğlu, A. Altan, S. Konyalioğlu, and H. Bayraktar. 2003. Effect of heat on oxidative stress, lipid peroxidation and some stress parameters in broilers. Br. Poult. Sci. 44(4):545-550. AOAC. 2006. Official Methods of Analysis, 15th ed., Assoc. Offic. Anal. Chem. Arlington, VA. Arbor Acres. 2000. Arbor Acres Breeder Management Manul. Arbor Acres Farm, Inc. Connecticut, USA. Balnave, D., and J. Brake. 2001. Different responses of broilers at low, high, or cyclic moderate-high temperatures to differences in dietary formulation. Aust. J. Agric. Res. 52:609-613. Balnave, D., J. Hayat, and J. Brake. 1999. Dietary arginine:lysine ratio and methionine activity at elevated environmental temperatures. J. Appl. Poult. Res. 8:1-9. Balsom, P. D., K. Soderlund, and B. Ekblom. 1994. Creatine in humans with special reference to creatine supplementation. Sports Med. 18(4):268-280. Belay, T., and R. G. Teeter. 1993. Broiler water balance and thermobalance during thermoneutral and high ambient temperature exposure. Poult. Sci. 72:116-124. Benton, C. E., D. Balnave, and J. Brake. 1998. Review: The use of dietary minerals during heat stress in broilers. Prof. Anim. Sci. 14:193-196. Blum, J. C. 1987. Feeding of Non-ruminant Livestock. pp. 110-112. Edited in France, INRA, Translated and edited by Julian Wiseman. Borges, S. A., A. V. Fischer da Silva, J. Ariki, D. M. Hooge, and K. R. Cummings. 2003. Dietary electrolyte balance for broiler chickens under moderately high ambient temperatures and relative humidities. Poult. Sci. 82:301-308. Borges, S. A., A. V. Fischer da Silva, A. Majorka, D. M. Hooge, and K. R. Cummings. 2004. Physiological responses of broiler chickens to heat stress and dietary electrolyte balance (sodium plus potassium minus chloride, milliequivalents per kilogram). Poult. Sci. 83:1551-1558. Bradford, M. M. 1976. A rapid and sensitive methed for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248-254. Brake, J., D. Balnave, and J. J. Dibner. 1998. Optimum dietary arginine:lysine ratio for broiler chickens is altered during heat stress in association with changes in intestinal uptake and dietary sodium chloride. Br. Poult. Sci. 39:639-647. Bredt, D. S., and S. H. Snyder. 1994. Nitric oxide: a physiologic messenger molecule. Annu. Rev. Biochem. 63:175-195. Car1son, H. E., J. T. Miglietta, M. S. Roginsky, and L. D. Stegink. 1989. Stimulation of pituitary hormone secretion by neurotransmitter amino acids in humans. Metabolism. 28:1179-1182. Cerretelli, P., and C. Marconi. 1990. L-carnitine supplementation in humans. The effects on physical performance. Int. J. Sports Med. 11(1):1-14. Chen, J., J. Hayat, B. Huang, D. Balnave, and J. Brake. 2003. Responses of broilers at moderate or high temperatures to dietary arginine:lysine ratio and source of supplemental methionine activity. Aust. J. Agric. Res. 54:177-181. Clouet, P., G. Sempore, M. Tsoko, J. Gresti, J. Demarquoy, I. Niot, J. Bezard, and P. Martin-Privat. 1996. Effect of short- and long-term treatments by a low level of dietary L-carnitine on parameters related to fatty acid oxidation in Wistar rat. Biochim. Biophys. Acta. 1299(2):191-197. Darre, M. J., and P. C. Harrison. 1987. Heat rate, blood pressure, cardiac output and total peripheral resistance of single comb white leghorn hens during an acute exposure to 35°C ambient temperature. Poult. Sci. 66:541-547. Deyhim, F., and R. G. Teeter. 1991. Sodium and potassium chloride drinking water supplementation effects on acid-base balance and plasma corticosterone in broiler reared in thermoneutral and heat-distressed environment. Poult. Sci. 70:2551-2553. Donaldson, W. E. 1990. Lipid metabolism in liver of chick: Response to feeding. Poult. Sci. 69:1183-1187. Gonzalez-Esquerra, R., and S. Leeson. 2006. Concentrations of putrescine, spermidine, and spermine in duodenum and pancreas as affected by the ratio of arginine to lysine and source of methionine in broilers under heat stress. Poult. Sci. 85:1398-1408. Griffin, H. D., K. Guo, D. Windsor, and S. C. Butterwith. 1992. Adipose tissue lipogenesis and fat deposition in leaner broiler chickens. J. Nutr. 122:363-368. Gudjonsson, H., B. U. Li, A. L. Shug, and W. A. Olsen. 1985. In vivo studies of intestinal carnitine absorption in rats. Gastroenterology. 88(6):1880-1887. Hayashi, K., N. Taniguchi, T. Kinjou, and A. Ohtsuka. 2001. Heat stress causes death via glucose metabolism in boriler. 13th European symposium on poultry nutrition and ascites workshop. Belgium. 250 pp. Hayashi, K., S. Kukita., M. Mukal, M. Toyomizu, and Y. Tomita. 1990. Effect of dietary thyroxine on muscle protein metabolism and abdominal fat content in broiler chicken in hot and moderate environments. Jpn. J. Zootech. Sci. 61(12):1107-1112. Hayat, J., D. Balnave, and J. Brake. 1999. Sodium bicarbonate and potassium bicarbonate supplements for broilers can cause poor performance at high temperatures. Br. Poult. Sci. 40:411-418. Hooge, D. M. 1995. Dietary potassium requirements of poultry explore. Feedstuffs. 67:12, 14, 16. Howlider, M. A. R., and S. P. Rose. 1987. Temperature and the growth of broilers. World’s Poult. Sci. J. 43:228-237. Iwasaki, K., K. Mano, M. Ishihara, Y. Yugari, and T. Matsuzawa. 1987. Effects of ornithine or arginine administration on serum amino acid levels. Biochem. Int. 14:971-976. Kolb, E. 1984. Fisiologia veterinaria. 4th ed. Rio de Janeiro: Guanabara Koogan, Rio de Janeiro, Brazil. Kumar, S., J. A. Dorsey, R. A. Muesing and J. W. Porter. 1970. Comparative studies of the pigeon liver fatty acid synthetase complex and its subunit. J. Biol. Chem. 245:4732-4744. Latshaw, J. D. 1993. Dietary lysine concentrations from deficient to excessive and the effects on broiler chicks. Br. Poult. Sci. 34:951-958. Leeson, S. 2009. Nutrition & health: Nutrient requirements of poultry. In 2010 reference issue and buyers guide. Feedstuffs. 80(38):45-52. Leeson, S., and J. D. Summers. 1991. Commercial Poultry Nutrition. University Books, Ontario, CA., Canada. pp. 259-267. Lohr, G. W., and H. D. Wallex. 1974. Method of enzymatic analysis (Vol. 2.). Academic press, New York, USA. pp. 636. Maynard, L. A., J. K. Loosli, H. F. Hintz, and R. G. Warner. 1993. Animal nutrition. McGraw-Hil Book Company, New York, USA. pp. 137-185. McCall, T. B., N. K. B. Smith, R. M. J. Palmer, B. J. R. White, and S. Moncada. 1989. Synthesis of nitric oxide from L-arginine by neutrophils. Release and interaction with superoxide anion. Biochem. J. 261:210-214. McNaughton, J. L., and F. N. Reece. 1982. Dietary energy requirements of broilers reared in low and moderate environmental temperatures. Poult. Sci. 61:1879-1884. Mendes, A. A., S. E. Watkins, J. A. England, E. A. Saleh, A. L. Waloroup, and P. W. Waloroup. 1997. Influence of dietary lysine levels and arginine:lysine ratios on performance of broilers exposed to heat or cold stress during the period of three to six weeks of age. Poult. Sci. 76:472-481. Mongin, P. 1981. Recent advances in dietary cation-anion balance: applications in poultry. Proc. Nutr. Soc. 40:285-294. Morikawa, E., M. A. Moskowitz, Z. Huang, T. Yoshida, K. Irikura, and T. Dalkara. 1994. L-arginine infusion promotes nitric oxide-dependent vasodilation, increases regional cerebral blood flow, and reduces infarction volume in the rat. Strock. 25:429-435. Mujahid, A., Y. Akiba, and M. Toyomizu. 2009. Progressive changes in the physiological responses of heat-stressed broiler chickens. Jap Poult. Sci. 46:163-167. Murakami, A. E., E. O. Oviedo-Rondon, E. N. Martins, M. S. Pereira, and C. Scapinello. 2001. Sodium and chloride requirements of growing broiler chickens (twenty-one to forty-two days of age)fed corn-soybean diets. Poult. Sci. 80:289-294. Naseem, M. T., S. Naseem, M. Younus, Z. L. Ch, A. Ghafoor, A. Aslam, and S. Akhter. 2005. Effect of potassium chloride and sodium bicarbonate supplementation on thermotolerance of broilers exposed to heat stress. Int. J. Poult. Sci. 4(11):891-895. National Research Council. 1994. Nutrient Requirements of Poultry. 9th Ed. National Academy Press, Washington, D. C. Ochoa, S. 1955. Malic enzyme. In: Method enzymology. Vol. 1, p. 739. Academic Press, N. Y. Odom, T. W., P. C. Harrison, and W. G. Bottje. 1986. Effects of thermal-induced respiratory alkalosis on blood ionized calcium levels in domestic hen. Poult. Sci. 65:570-573. Officer, D. J., E. S. Batterham, and D. J. Farrell. 1997. Comparison of growth performance and nutrient retention of weaner pigs given diets based on casein, free amino acids or conventional proteins. Br. J. Nutr. 77(5):731-741. Olanrewaju, H. A., J. P. Thaxton, W. A. Dozier, and S. L. Branton. 2007. Electrolyte diets, stress, and acid-base balance in broiler chickens. Poult. Sci. 86:1363-1371. Oqden, J. E., and P. K. Moore. 1995. Inhibition of nitric oxide synthase-potential for a novel class of therapeutic agent ? Trends Biotechnol. 13:70-78. Patience, J. F. 1990. A review of the role of acid-base balance in amino acid nutrition. J. Anim. Sci. 68(2):398-408. Pruon, D., and R. Santamaria. 1997. Sodium bicarbonate and broiler performance at high stocking densities in a tropical environment. J. Appl. Poult. Res. 6:443-448. Rahimi, G. 2005. Effect of heat shock at early growth phase on glucose and calcium regulating axis in broiler chickens. Int. J. Poult. Sci. 4(10):790-794. Ramsay, R. R., R. D. Gandour, and F. R. Van Der Leij. 2001. Molecular enzymology of carnitine transfer and transport. Biochim. Biophys. Acta. 1546(1):21-437. Rebouche, C. J., and C. A. Chenard. 1991. Metabolic fate of dietary quantification of urinary and fecal metabolites. J. Nutr. 121(4):539-546. Renden, J. A., and G. R. McDaniel. 1984. Reproductive performance of breeders exposed to cycling high temperature form 17 to 20 weeks of age. Poult. Sci. 63:1481-1488. Ruiz-Lopez, B., and R. E. Austic. 1993. The effect of selected minerals on the acid-base balance of growing chicks. Poult. Sci. 72:1054-1062. Sands, J. S., and M. O. Smith. 2002. Effects of dietary manganese proteinate or chromium picolinate supplementation on plasma insulin, glucagon, glucose, and serum lipids in broiler chickens reared under thermoneutral or heat stress conditions. Int. J. Poult. Sci. 1(5):145-149. SAS. 2009. SAS User’s Guide: Statistics SAS Institute. Version 9.1 ed. SAS Inst. Inc., Cary, NC. Schaefer, A., F. Piquard, B. Geny, S. Doutreleau, E. Lampert, B. Mettauer, and J. Lonsdorfer. 2002. L-arginine reduces exercise-induced increase in plasma lactate and ammonia. Int. J. Sports Med. 23(6):403-407. Scott, R. L., and R. E. Austic. 1978. Influence of Dietary Potassium on Lysine Metabolism in the chick. J. Nutr. 108(1):137-144. Selye, H. 1952. The store of adaptation syndrome. Montreal, Acta Inc. Smith, M. O., and R. G. Teeter. 1987. Potassium balance of the 5 -8-week-old broiler exposed to constant heat or cycling high temperature stress and the effects of supplemental potassium chloride on body weight gain and feed efficiency. Poult. Sci. 66:487-492. Stevenson, M. H. 1985. Effects of diets of varying energy concentrations on the growth and carcase composition of geese. Br. Poult. Sci. 26:493-504. Sweeney, H. L. 1994.The importance of the creatine kinase reaction: the concept of metabolic capacitance. Med. Sci. Sports Exerc. 26(1):30-36. Teeter, R. G., and M. O. Smith. 1986. High chronic ambient temperature stress effects on broiler acid-base balance and their response to supplemental ammonium chloride, potassium chloride, and potassium carbonate. Poult. Sci. 65:1777-1781. Teeter, R. G., M. O. Smith, F. N. Dwens, and S. C. Arp. 1985. Chronic heat stress and respiratory alkalosis: Occurrence and treatment in broiler chickens. Poult. Sci. 64:1061-1064. Toyomizu, M., M. Tokuda, A. Mujahid, and Y. Akiba. 2005. Progressive alteration to core temperature, respiration and blood acid-base balance in broiler chickens exposed to acute heat stress. Jap Poult. Sci. 42:110-118. Van Soest, P. J., J. B. Robertson, and B. A. Lewis. 1991. Method for dietary fiber, neutral fiber and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74:3583-3597. Waldroup, P. W., R. J. Mitchell, J. R. Payne, and K. P. Hazen. 1976. Performance of chicks fed diets formulated to minimize excess levels of essential amino acids. Poult. Sci. 55:243-253. Wu, L. Y., Y. J. Fang, and X. Y. Guo. 2011. Dietary L-arginine supplementation beneficially regulates body fat deposition of meat-type ducks. Br. Poult. Sci. 52(2):221-226. Yahav, S., and S. Hurwitz. 1996. Induction of thermotolerance in male broiler chickens by temperature conditioning at an early age. Poult. Sci. 402-406. Yahav, S., A. Straschnow, I. Plavnik, and S. Hurwitz. 1997. Blood system response of chickens to changes in environmental temperature. Poult. Sci. 76:627-633.
台灣地處熱帶及亞熱帶地區,夏季高溫多濕,容易造成禽畜產生熱緊迫的問題,而導致採食量(FI)低落、增重(BWG)減緩、飼料轉換率(FCR)不佳及斃死率增加等現象,造成飼養業者經濟上的損失。近年來許多研究顯示,在高溫環境下,調整飼糧中精胺酸與離胺酸(Arg:Lys)之適當比例可改善肉雞FI、BWG及FCR,而碳酸氫鈉(NaHCO3)為一緩衝物質,可調節動物體內酸鹼平衡,以舒緩熱緊迫。本試驗旨在探討飼糧Arg:Lys比例及添加NaHCO3對白羅曼鵝生長性能之影響。試驗一及試驗二的試驗時間分別為2010年7月9日~8月6日及10月8日~11月5日,均使用9週齡白羅曼鵝168隻,公母各半,分為三種Arg:Lys比例之處理組(1.045、1.245及1.445)及有無添加NaHCO3之處理組(0%及0.5%),飼糧及飲水採任食,試驗於鵝隻滿13週齡結束後,採集血液及器官以供分析。試驗一結果顯示,當環境溫度較高時,飼糧中添加0.5% NaHCO3,可改善鵝BWG(P<0.05),而不同Arg:Lys比例對生長性狀無明顯之影響,但以Arg:Lys比例1.245時,有較佳的生長趨勢;隨著Arg:Lys比例提高,血清中葡萄糖濃度增加,而總脂質濃度降低,肝臟重量減少,但腹脂重量增加(P<0.05);當飼糧Arg:Lys比例為1.045時,血清中氯離子濃度及總膽固醇濃度較高,而肝臟的總膽固醇濃度較低(P<0.05);添加0.5% NaHCO3可顯著降低肝臟中總脂質濃度(P<0.05)。試驗二結果顯示,當環境溫度適當時,飼糧中添加0.5% NaHCO3,反而對鵝隻的生長有不良影響(P<0.05),而不同Arg:Lys比例對生長性狀無明顯之影響,但以Arg:Lys比例為1.245時,有較佳的生長趨勢;當飼糧Arg:Lys比例為1.445時,血液GOT濃度增加,而血球容積比(PCV)及總膽固醇濃度顯著減少,肝臟和脾臟重量、肝臟中三酸甘油酯、總膽固醇及葡萄糖-6-磷酸去氫酶(G-6-PDH)濃度顯著降低(P<0.05);當飼糧Arg:Lys比例為1.245時,血液pH值顯著減少(P<0.05);在飼糧Arg:Lys比例為1.045時,脂肪酸合成酶(FAS)活性最高((P<0.05);而隨著Arg:Lys比例提高,腹脂重量隨之減少,且血清中三酸甘油酯隨之降低(P<0.05);添加0.5% NaHCO3顯著降低血清中總膽固醇濃度,且增加肝臟中三酸甘油酯濃度(P<0.05)。綜合以上所述,不同的飼糧Arg:Lys比例會影響鵝隻對於胺基酸的利用及代謝,血清和肝臟中各種脂質成分含量及肝臟中脂質合成相關酵素活性進一步影響鵝隻的肝臟和腹脂重量,此反應調整飼糧Arg:Lys比例會對鵝隻體內的脂質合成、利用及代謝造成影響,而且在不同的環境溫度下,所影響的結果也不同。就生長性狀而言,本試驗飼糧Arg:Lys比例以1.245為適當,而添加0.5% NaHCO3可以舒緩熱緊迫,進而改善夏季肥育期鵝隻的生長表現。

Taiwan is located in tropical and subtropical regions, and high ambient temperature and relative humidity under summer season. Animals have poor FI, BWG, FCR and high mortality that caused impact of economical benefit. In recent years, many studies indicated that regulated dietary Arg:Lys ratio, improved FI, BWG and FCR, during heat stress in broilers. NaHCO3 can be used as buffer substance that can regulate acid-base balance in animals and improve physiological traits under heat stress. Thus, this study was conducted to assess the effects of dietary Arg:Lys ratio and NaHCO3 supplementation on growth performance in White Roman geese. Two trials were conducted. Trial 1 and trial 2 were conducted during July 9 to August 6 and October 8 to November 5 of 2010, respectively. One hundred sixty-eight 9-week-old geese were allocated into six dietary treatments, three different dietary Arg:Lys ratios (1.045, 1.245 and 1.445% in feed), and two different levels of NaHCO3 supplementation (0 and 0.5% in feed) for each trial. Feed and water were provided ad libitum throughout the experimental period of 4 weeks. At the end of trails, two males and two females were selected in each replicate and sacrificed for blood and visceral organs collection. Results in trial 1, BWG was improved when the diet supplemented with 0.5% NaHCO3 under high ambient temperature (P<0.05), and that was not significantly difference by dietary Arg:Lys ratios, however, dietary Arg:Lys ratio at 1.245, performance had a better tendency; when dietary Arg:Lys ratio increased, liver weight increased and abdominal fat weight decreased, serum glucose increased and total lipid concentrations decreased significantly (P<0.05); dietary Arg:Lys ratio at 1.045 had higher serum Cl- and total cholesterol concentrations, and lower liver total cholesterol concentrations (P<0.05); the diet supplemented with 0.5% NaHCO3 decreased liver total lipid concentrations significantly (P<0.05). Results in trial 2, the diet supplemented with 0.5% NaHCO3 had poor performance (P<0.05) under moderate temperature, and that was not significantly difference by dietary Arg:Lys ratios, however, dietary Arg:Lys ratio at 1.245, performance had a better tendency; when dietary Arg:Lys ratio at 1.445, blood GOT increased, PCV, total cholesterol concentrations decreased, and liver and spleen weight, liver triglycerides, total cholesterol concentrations, G-6-PDH activities decreased significantly (P<0.05); when dietary Arg:Lys ratio at 1.245 had lower blood pH (P<0.05); when dietary Arg:Lys ratio at 1.045 had higher FAS activities (P<0.05); dietary Arg:Lys ratio increased, abdominal fat weight increased, and serum triglycerides decreased significantly (P<0.05); the diet supplemented with 0.5% NaHCO3 decreased serum total cholesterol concentrations and increased liver triglycerides concentrations significantly (P<0.05). In conclusion, geese were affected for the utilization and metabolism of amino acids by different dietary Arg:Lys ratios, and it affected further lipid-related measures: liver and abdominal fat weight, concentrations of various lipid fractions in serum and liver, and activities of hepatic lipogenic-related enzymes, so geese were affected indeed for the synthesis, utilization, and metabolism of various lipids in the body by adjusting dietary Arg:Lys ratio, and there were also different effects in different ambient temperatures. Dietary Arg:Lys ratio at 1.245 was moderate and the dietary supplementation of NaHCO3 at 0.5% level reduced heat stress and showed a positive effect on production performance during finishing period in geese.
其他識別: U0005-2607201116403500
Appears in Collections:動物科學系

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.