Please use this identifier to cite or link to this item:
標題: 任食引發肥胖改變白肉種雞胰臟磷脂代謝與胰島素分泌-細胞自我防護機制之探討
Obesity-associated alterations of pancreatic phospholipid metabolism and insulin secretion of broiler breeder hens under voluntary feed intake-a study of cell self-defensive mechanisms.
作者: 黃郁芬
Huang, Yu-Fen
關鍵字: Obesity;肥胖;Lipotoxicity;Broiler breeder hens;Pancreas;Phosphatidylcholine;脂肪中毒;白肉種雞;胰臟;磷脂醯膽鹼
出版社: 動物科學系所
引用: 周寬典。1989。改換肉雞後期飼料減少腹腔內脂肪。現代畜殖養雞世界。台北市。 劉祖誠。2009。過度餵飼引發白肉種雞與台灣土雞產蛋性能低落-免疫細胞異嗜球相關功能之探討 潘昱恩。2010。任食影響白肉種雞與不同台灣肉用土雞產蛋性能-肥胖相關代謝失調之探討。碩士論文。中興大學。台中。 謝淑貞。1988。早期限飼可以減少肉雞脂肪。現代畜殖養雞世界。台北市。 Ahren, B. and A. J. Scheurink. 1998. Marked hyperleptinemia after high-fat diet associated with severe glucose intolerance in mice. Eur. J. Endocrinol. 139 : 461-467. Ahren, B., T. Gudbjartsson, A. N. Al-Amin, H. Mårtensson, U. Myrsén-Axcrona, S. Karlsson, H. Mulder, and F. Sundler. 1999. Islet perturbations in rats fed a high-fat diet. Pancreas. 18 : 75-83. Alemzadeh, R., M. D. Karlstad, K. Tushaus, and M. Buchholz. 2008. Diazoxide enhances basal metabolic rate and fat oxidation in obese Zucker rats. Metabolism. 57 : 1597-1607. Andrieu-Abadie, N. and T. Levade. 2002. Sphingomyelin hydrolysis during apoptosis. Biochim. Biophys. Acta. 1585 : 126-134. Awad, A. B.,F. Y. Ntanios, C. S. Fink, and P. J. Horvath. 1996. Effect of membrane lipid alteration on the growth, phospholipase C activity and G protein of HT-29 tumor cells. Prostaglandins Leukot. Essent. Fatty Acids. 55 : 293-302. Barboto, G. F. 1994. Genetic control of food intake in chicken. J. Nutr. 124 : 1341S-1348S. Bensadoun, A. and A. Rothfeld. 1972. The form of absorption of lipids in the chicken (Callus domesticits). Proc. Soc. Exp. Biol. Med. 141 : 814-817. Boni-Schnetzler, M. J. Thome, G. Pamaud, L. Marselli, J. A. Ehses, J. Kerr-Conte, F. Pattou, P. A. Halban, G. C. Weir, and M. Y. Donath. 2008. Increased interleukin (IL)-1{beta} messenger ribonucleic acid expression in {beta}-cells of individuals with type 2 diabetes and regulation of IL-1{beta} in human islets by glucose and autostimulation. J. Clin. Endocrinol. Metab. 93 : 4065-4074. Boni-Schnetzler, M., S. Boller, S. Debray, K. Bouzakri, D. T. Meier, R. Prazak, J. Kerr-Conte, F. Pattou, J. A. Ehses, F. C. Schuit, and M. Y. Donath. 2009. Free fatty acids induce a proinflammatory response in islets via the abundantly expressed interleukin-1 receptor I. Endocrinology. 150 : 5218-5229. Branstrom, R., C. A. Aspinwall, S. Valimaki, C. G. Ostensson, A. Tibell, M. Eckhard, H. Brandhorst, B. E. Corkey, P. O. Berggren, and O. Larsson. 2004. Long-chain CoA esters activate human pancreatic beta-cell KATP channels : potential role in Type 2 diabetes. Diabetologia. 47 : 277-283. Branstrom, R., I. B. Leibiger, B. Leibiger, B. E. Corkey, P. O. Berggren, and O. Larsson. 1998. Long chain coenzyme A esters activate the poreforming subunit (Kir6. 2) of the ATP-regulated potassium channel. J. Biol. Chem. 273 : 31395-31400. Bray, G. A. and D. A. York. 1979. Hypothalamic and genetic obesity in experimental animals : an autonomic and endocrine hypothesis. Physiol. Rev. 59 : 719-809. Briaud, I., C. L. Kelpe, J. M. Johnson, P. O. T. Tran, V. Poitout. 2002. Differential effects of hyperlipidemia on insulin secretion in islets of Langerhans from hyperglycemic vs. normoglycemic rats. Diabetes. 51 : 662-668. Briaud, I., J. S. Harmon, C. L. Kelpe, V. B. Segu, and V. Poitout. 2001. Lipotoxicity of the pancreatic beta-cell is associated with glucose-dependent esterification of fatty acids into neutral lipids. Diabetes. 50 : 315-321. Briaud, I., J. S. Harmon, C. L. Kelpe, V. B. Segu, and V. Poitout. 2001. Lipotoxicity of the pancreatic β-cell is associated with glucose-dependent esterification of fatty acids into neutral lipids. Diabetes 50 : 315–321. Brough, D. and N. J. Rothwell. 2007. Caspase-1-dependent processing of prointerleukin-1β is cytosolic and precedes cell death. J. Cell Sci. 120 : 772–781. Brun, T., F. Assimacopoulos-Jeannet, B. E. Corkey, and M. Prentki. 1997. Long-chain fatty acids inhibit acetyl-CoA carboxylase gene expression in the pancreatic beta-cell line INS-1. Diabetes. 46 : 393–400. Chen, L., T. Alam, J. H. Johnson, S. Hughes, C. B. Newgard, and R. H. Unger. 1990. Regulation of beta-cell glucose transporter gene expression. Proc. Natl. Acad. Sci. USA 87 : 4088-4092. Chen, S. E., J. P. McMurtry, and R. L. Walzem. 2006. Overfeeding-induced ovarian dysfunction in broiler breeder hens is associated with lipotoxicity. Poult. Sci. 85 : 70-81. Corkey, B. E., M. C. Glennon, K. S. Chen, J. T. Deeney, F. M. Matschinsky, and M. Prentki. 1989. A role for malonyl-CoA in glucosestimulated insulin secretion from clonal pancreatic beta-cells. J. Biol. Chem. 264 : 21608-21612. Cui, Z., M. Houweling, M. H. Chen, M. Record, H. Chap, D. E. Vance, and F. Terce. 1996. A Genetic Defect in Phosphatidylcholine Biosynthesis Triggers Apoptosis in Chinese Hamster Ovary Cells. J. Biol. Chem. 271 : 14668-11467. Datta, S. R., H. Dudek, X. Tao, S. Masters, H. Fu, Y. Gotoh, and M. E. Greenberg. 1997. Akt phosphorylation of BAD couples survival signals to the cellintrinsic death machinery. Cell. 91 : 231-241. Deeney, J. T., J. Gromada, M. Hoy, H. L. Olsen, C. J. Rhodes, M. Prentki, P. O. Berggren, and B. E. Corkey. 2000. Acute stimulation with long chain acyl-CoA enhances exocytosis in insulinsecreting cells (HIT T-15 and NMRI beta-cells). J. Biol. Chem. 275 : 9363–9368. Donath, M. Y., M. Bo¨ ni-Schnetzler, H. Ellingsgaard, P. A. Halban, and J. A. Ehses. 2010. Cytokine production by islets in health and diabetes : cellular origin, regulation and function. Trends Endocrinol. Metab. 21 : 261-267. Dufer, M., K. Noack, P. Krippeit-Drews, and G. Drews. 2010. Activation of the AMP-activated protein kinase enhances glucose-stimulated insulin secretion in mouse β-cells. Islets. 2 : 156-163. Dupont, J., M. Derouet, J. Simon, and M. Taouis. 1998. Nutritional state regulates insulin receptor and IRS-1 phosphorylation and expression in chicken. Am. J. Physiol. 274 : E309-E316. Dupont, J., S. Tesseraud, and J. Simon. 2009. Insulin signaling in chicken liver and muscle. Gen. Comp. Endocrinol. 163 : 52-57. Ehses, J. A., A. Perren, E. Eppler, P. Ribaux, J. A. Posposilik, R. Maor-Cahn, X. Gueripel, H. Ellingsgaard, M. K. Schneider, G. Biollaz, A. Fontana, M. Reinecke, F. Homo-Delarche, and M. Y. Donath. 2007. Increased number of islet-associated macrophages in type 2 diabetes. Diabetes. 56 : 2356-2370. English, D., Y. Cui, and R. A. Siddiqui. 1996. Messenger functions of phosphatidic acid. Chem. Phys. Lipids. 80 : 117-132. Feng, D. D., Z. Luo ,S. G. Roh, M. Hernandez, N. Tawadros, D. J. Keating, and C. Chen. 2006. Reduction in voltage-gated K+ currents in primary cultured rat pancreatic beta-cells by linoleic acids. Endocrinology. 147 : 674-682. Flores, I., D. R. Jones, and I. Merida. 2000. Changes in the balance between mitogenic and antimitogenic lipid second messengers during proliferation, cell arrest, and apoptosis in T-lymphocytes. FASEB J. 4 : 1873-1875. Foster, D. A. 2007. Regulation of mTOR by phosphatidic acid? Cancer Res. 67 : 1-4. Fujiwara, K., F. Maekawa, and T. Yada. 2005. Oleic acid interacts with GPR40 to induce Ca2+ signaling in rat islet beta-cells, mediation by PLC and L-type Ca2+ channel and link to insulin release. Am. J. Physiol. Endocrinol. Metab. 289 : E670–677. Gehrmann, W., M. Elsner, and S. Lenzen. 2010. Role of metabolically generated reactive oxygen species for lipotoxicity in pancreatic β-cells. Diabetes Obes. Metab. Suppl. 2 : 149-158. Gembal, M., P. Gilon, and J. C. Henquin. 1992. Evidence that glucose can control insulin release independently from its action on ATP-sensitive K+ channels in mouse B cells. J. Clin. Invest. 89 : 1288-1295. Giorgio, M., M. Trinei, E. Migliaccio, and P. G. Pelicci. 2007. Hydrogen peroxide : a metabolic by-product or a common mediator of ageing signals? Nat. Rev. Mol. Cell Biol. 8 : 722-728. Goodridge, A. G. 1968. Conversion of [U-14C] glucose into carbon dioxide, glycogen, cholesterol and fatty acids in liver slices from embryonic and growing chicks. Biochem. J. 108 : 655. Gravena, C., P. C. Mathias, and S. J. Ashcroft. 2002. Acute effectsof fatty acids on insulin secretion from rat and human islets of Langerhans. J. Endocrinol. 173 : 73-80. Gremlich, S., C. Bonny, G. Waeber, and B. Thorens. 1997. Fatty acids decrease IDX-1 expression in rat pancreatic islets and reduce GLUT2, glucokinase, insulin, and somatostatin levels. J. Biol. Chem. 272 : 30261-30269. Griffin, H. D., K. Guo, D. Windsor, and S. C. Butterwith. 1992. Adipose tissue lipogenesis and fat deposition in leaner broiler chickens. J. Nutr. 122 : 363-368. Grimsby, J., R. Sarabu, W. L. Corbett, N. E. Haynes, F. T. Bizzarro, J. W. Coffey, K. R. Guertin, D. W. Hilliard, R. F. Kester, P. E. Mahaney, L. Marcus, L. Qi, C. L. Spence, J. Tengi, M. A. Magnuson, C. A. Chu, M. T. Dvorozniak, F. M. Matschinsky, and J. F. Grippo. 2003. Allosteric activators of glucokinase : potential role in diabetes therapy. Science. 301 : 370-373. Guay, C., S. R. Madiraju, A. Aumais, E. Joly, and M. Prentki. 2007. A role for ATP-citrate lyase, malic enzyme, and pyruvate/citrate cycling in glucose-induced insulin secretion. J. Biol. Chem. 282 : 35657-35665. Gwiazda, K. S., T. L. Yang, Y. Lin, and J. D. Johnson. 2009. Effects of palmitate on ER and cytosolic Ca2+ homeostasis in beta-cells. Am. J. Physiol. Endocrinol. Metab. 296 : E690-701. Hannun, Y. 1994. The sphingomyelin cycle and the second messenger function of ceramide. J. Biol. Chem. 269 : 3125-3128. Harmon, J. S., C. E. Gleason, Y. Tanaka, V. Poitout, and R. P. Robertson. 2001. Antecedent hyperglycemia, not hyperllipidemia, is associated with increased islet triacylglycerol content and decreased insulin gene mRNA level in Zucker diabetic fatty rats. Diabetes. 50 : 2481-2486. Hasegawa, S., T. Niimori, K. Sato, Y. Hikami, and T. Mizuno. 1982. Effect of estrogen on triglyveride metabolism in chick liver. J. Zoo Tect. Sci. 52 : 546. Haversen, L., K. N. Danielsson, L. Fogelstrand, and O. Wiklund. 2009. Induction of proinflammatory cytokines by long-chain saturated fatty acids in human macrophages. Atherosclerosis. 202 : 382-393. Hazelwood, R. L., and S. R. Cieslak. 1989. In vitro release of pancreatic hormones following 99% pancreatectomy in the chicken. Gen. Comp. Endocrinol. 73 : 308-317. Hiramatsu, S. and V. Grill. 2001. Influence of a high-fat diet during chronic hyperglycemia on beta-cell function in pancreatic islet transplants to streptozotocin-diabetic rats. Eur. J. Endocrinol. 144 : 521-527. Hodgkin, M. H.,T. R. Pettitt, A. Martin, R. H. Michell, A. J. Pemberton, and M. J. O. Wakelam. 1998. Diacylglycerols and phosphatidates : which molecular species are intracellular messengers? Trends Biochem. Sci. 23 : 200-204. Hoffman, J. M. and S. G. Laychock. 1988. Choline turnover in phosphatidylcholine of pancreatic islets. Diabetes. 37 : 1489-1497. Hosokawa, H., B. E. Corkey, and J. L. Leahy. 1997. Beta-cell hypersensitivity to glucose following 24-h exposure of rat islets to fatty acids. Diabetologia. 40 : 392-397. Itoh, Y., Y. Kawamata, M. Harada, M. Kobayashi, R. Fujii, S. Fukusumi S, K. Ogi, M. Hosoya, Y. Tanaka, H. Uejima, H. Tanaka, M. Maruyama, R. Satoh, S. Okubo, H. Kizawa, H. Komatsu, F. Matsumura, Y. Noguchi, T. Shinohara, S. Hinuma, Y. Fujisawa, and M. Fujino. 2003. Free fatty acids regulate insulin secretion from pancreatic beta cells through GPR40. Nature. 422 : 173–176. Jaccoby, S., E. Arnon, N. Snapir, and B. Robinzon. 1994. Effects of bilateral basomedial hypothalamic lesions on feeding, fattiness, and reproductive functions in the White Leghorn hen. Physiol. Behav. 56 : 1081-1089. Jacqueminet, S., I. Briaud, C. Rouault, G. Reach, and V. Poitout. 2000. Inhibition of insulin gene expression by long-term exposure of pancreatic β-cells to palmitate is dependent upon the presence of a stimulatory glucose concentration. Metabolism. 49 : 532-536. Johnson, A. L., J. T. Bridgham, and J. A. Swenson. 2001. Activation of the Akt/protein kinase B signaling pathway is associated with granulosa cell survival. Biol. Reprod. 64 : 1566-1574. Jonas, J. C., A. Sharma, W. Hasenkamp, H. Ilkova, G. Patane, R. Laybutt, S. Bonner-Weir, and G. C. Weir. 1999. Chronic hyperglycemia triggers loss of pancreatic β-cell differentiation in an animal model of diabetes. J. Biol. Chem. 274 : 14112-14121. Jones, D. P., L. Eklow, H. Thor and S. Orrenius. 1981. Metabolism of hydrogen peroxide in isolated hepatocytes : relative contributions of catalase and glutathione peroxidase in decomposition of endogenously generated H2O2. Arch. Biochem. Biophys. 210 : 505-516. Julian, R. J. 1998. Rapid growth problems : Ascites and skeletal deformities in broilers. Poult. Sci. 77 : 1773-1780. Kaneto, H, N. Katakami, D. Kawamori, T. Miyatsuka, K. Sakamoto, T. A. Matsuoka, M. Matsuhisa, and Y. Yamasaki. 2007. Involvement of oxidative stress in the pathogenesis of diabetes. Antioxid. Redox. Signal. 9 : 355-366. Kaneto, H., J. Fujii, T. Myint, N. Miyazawa, K. N. Islam, Y. Kawasaki, K. Suzuki, M. Makamura, H. Tatsumi, Y. Yamasaki, and N. Taniguchi. 1996. Reducing sugars trigger oxidative modification and apoptosis in pancreatic β-cells by provoking oxidative stress through the glycation reaction. Biochem. J. 320 : 855-863. Katanbaf, M. N., E. A. Dunnington, and P. B. Siegel. 1989. Restricted feeding in early and late-feathering chickens. 1. Growth and physiological responses. Poult. Sci. 68 : 344-351. Kennedy, E. D., P. Maechler, and C. B. Wollheim. 1998. Effects of depletion of mitochondrial DNA in metabolism secretion coupling in INS-1 cells. Diabetes. 47 : 374-380. Khasawneh, J., M. D. Schulz, A. Walch, J. Rozman, A. M. Hrabe, M. Klingenspor, A. Buck, M. Schwaiger, D. Saur, R. M. Schmid, G. Kloppel, B. Sipos, F. R. Greten, and M. C. Arkan. 2009. Inflammation and mitochondrial fatty acid beta-oxidation link obesity to early tumor promotion. Proc. Natl. Acad. Sci. USA 106 : 3354-3359. Kilpatrick, E. D. and R. P. Robertson. 1998. Differentiation between glucose-induced desensitization of insulin secretion and β-cell exhaustion in the HIT-T15 cell line. Diabetes. 47 : 606-611. Kim, Y., S. Iwashita, T. Tamura, K. Tokuyama, and M. Suzuki. 1995. Effect of high-fat diet on the gene expression of pancreatic GLUT2 and glucokinase in rats. Biochem. Biophys. Res. Commun. 208 : 1092-1098. King, D. L., and R. L. Hazelwood. 1976. Regulation of avian insulin secretion by isolated perfused chicken pancerea. Am. J. Physiol. 231 : 1830-1839. Koyama, K., G. Chen, Y. Lee, and R. H. Unger. 1997. Tissue triglycerides, insulin resistance, and insulin production : implications for hyperinsulinemia of obesity. Am. J. Physiol. 273 : E708-E713. Lacy, M. P., H. P. Van Krey, P.A. Skewes, and D. M. Denbow. 1987. Food intake response of genetically selected high and low-weight line cockerels to plasma infusions from fasted fowl. Poult. Sci. 66 : 1224-1228. Lameloise, N., P. Muzzin, M. Prentki, and F. Assimacopoulos-Jeannet. 2001. Uncoupling protein 2 : a possible link between fatty acid excess and impaired glucose-induced insulin secretion? Diabetes. 50 : 803-809. Larsen, C. M., M. Faulenbach, A. Vaag, A. Volund, and J. A. Ehses. 2007. Interleukin-1-receptor antagonist in type 2 diabetes mellitus. N. Engl. J. Med. 356 : 1517-1526. Laychock SG. 1983. Fatty acid incorporation into phospholipids of isolated pancreatic islets of the rat relationship to insulin release. Diabetes. 32 : 6-13. Lee, J. Y., K. H. Sohn, S. H. Rhee, and D. Hwang. 2001. Saturated fatty acids, but not unsaturated fatty acids, induce the expression of cyclooxygenase-2 mediated through Toll-like receptor 4. J. Biol. Chem. 276 : 16683-16689. Lee, J. Y., L. Zhao, H. S. Youn, A. R. Weatherill, R. Tapping, L. Feng, W. H. Lee, K. A. Fitzgerald, and D. H. Hwang. 2004. Saturated fatty acid activates but polyunsaturated fatty acid inhibits Toll-like receptor 2 dimerized with Toll-like receptor 6 or 1. J. Biol. Chem. 279 : 16971-16979. Lee, S. H., Y. M. Han, B. H. Min, and I. S. Park. 2003. Cytoprotective effects of polyenoylphosphatidylcholine (PPC) on β-cells during diabetic induction by streptozotocin. J. Histochem. Cytochem. 51 : 1005-1015. Lee, Y., H. Hirose, M. Ohneda, J. H. Johnson, J. D. McGarry, and R. H. Unger. 1994. Beta-cell lipotoxicity in the pathogenesis of non-insulin-dependent diabetes mellitus of obese rats : impairment in adipocyte-beta-cell relationships. Proc. Natl. Acad. Sci. USA 91 : 10878-10882. Lenzen S. 2008. Oxidative stress : the vulnerable beta-cell. Biochem. Soc. Trans. 36 : 343–347. Lenzen, S., J. Drinkgern, and M. Tiedge. 1996. Low antioxidant enzyme gene expression in pancreatic islets compared with various other mouse tissues. Free Radic. Biol. Med. 20 : 463-466. Levy, E., C. C. Roy, G. Lepage, and M. Bendayan. 1988. Lipid abnormalities in pancreatic tissue of streptozotocin-induced diabetic rats. Lipids. 23 : 771-778. Li, Z. and D. E. Vance. 2008. Phosphatidylcholine and choline homeostasis. J. Lipid Res. 49 : 1187-1194. Liu, Y., G. Fiskum, and D. Schubert. 2002. Generation of reactive oxygen species by the mitochondrial electron transport chain. J. Neurochem. 80 : 780-787. Lu, M., J. Seufert, and J. F. Habener. 1997. Pancreatic β-cell-specific repression of insulin gene transcription by CCAAT/Enhancer-binding protein β Inhibitory interactions with basic helix-loop-helix transcription factor E47. J. Biol. Chem. 272 : 28349-28359. Lupi, R., F. Dotta, L. Marselli, S. Del Guerra, M. Masini, C. Santangelo, G. Patané, U. Boggi, S. Piro, M. Anello, E. Bergamini, F. Mosca, U. Di Mario, S. Del Prato, and P. Marchetti. 2002. Prolonged exposure to free fatty acids has cytostatic and pro-apoptotic effects on human pancreatic islets : evidence that beta-cell death is caspase mediated, partially dependent on ceramide pathway, and Bcl-2 regulated. Diabetes. 51 : 1437-1442. MacDonald, M. J., A. Dobrzyn, J. Ntambi, and S. W. Stoker. 2008. The role of rapid lipogenesis in insulin secretion : Insulin secretagogues acutely alter lipid composition of INS-1 832/13 cells. Arch. Biochem. Biophys. 470 : 153-162. Maedler, K., D. M. Schumann, N. Sauter, H. Ellingsgaard, D. Bosco, R. Baertschiger, Y. Iwakura, J. Oberholzer, C. B. Wollheim, B. R. Gauthier, and M. Y. Donath. 2006. Low concentration of interleukin-1beta induces FLICE-inhibitory protein-mediated beta-cell proliferation in human pancreatic islets. Diabetes. 55 : 2713-2722. Maedler, K., G. A. Spinas, D. Dyntar, W. Moritz, N. Kaiser, and M. Y. Donath. 2001. Distinct effects of saturated and monounsaturated fatty acids on beta-cell turnover and function. Diabetes. 50 : 69-76. Maedler, K., J. Oberholzer, P. Bucher, G. A. Spinas, and M. Y. Donath. 2003. Monounsaturated fatty acids prevent the deleterious effects of palmitate and high glucose on human pancreatic beta-cell turnover and function. Diabetes. 52 : 726-733. Maedler, K., P. Sergeev, F. Ris, J. Oberholzer, H. I. Joller-Jemelka, G. A. Spinas, N. Kaiser, P. A. Halban, and M. Y. Donath. 2002. Glucose-induced beta cell production of IL-1beta contributes to glucotoxicity in human pancreatic islets. J. Clin. Invest. 110 : 851-860. Magnoni, C., E. Euclidi, L. Benassi, G. Bertazzoni, A. Cossarizza, S. Seidenari, and A. Giannetti. 2002. Ultraviolet B radiation induces activation of neutral and acidic sphingomyelinases and ceramide generation in cultured normal human keratinocytes. Toxicol. In. Vitro 16 : 349-255. Masiello, P., M. Novelli, M. Bombara, V. Fierabracci, S. Vittorini, M. Prentki, and E. Bergamini. 2002. The antilipolytic agent 3,5-dimethylpyrazole inhibits insulin release in response to both nutrient secretagogues and cyclic adenosine monophosphate agonists in isolated rat islets. Metabolism. 51 : 110-114. Mathias, S., L. A. Pena, and R. N. Kolesnick. 1998. Signal transduction of stress via ceramide. Biochem. J. 335 : 465-480. McGarry, J. D. and R. L. Dobbins. 1999. Fatty acids, lipotoxicity and insulin secretion. Diabetologia. 42 : 128-138. Merrill, Jr. A. H. 2002. De novo sphingolipid biosynthesis : a necessary, but dangerous, pathway. J. Biol. Chem. 277 : 25843-25846. Miki, T, K. Nagashima, F. Tashiro, K. Kotake, H. Yoshitomi, A. Tamamoto, T. Gonoi, T. Iwanaga, J. Miyazaki, and S. Seino. 1998. Defective insulin secretion and enhanced insulin action in KATP channel-deficient mice. Proc. Natl. Acad. Sci. USA 95 : 10402-10406. Minokoshi, Y., T. Shiuchi, S. Lee, A. Suzuki, and S. Okamoto. 2008. Role of hypothalamic AMP-kinase in food intake regulation. Nutrition. 24 : 786-790. Mollison, B., W. Guenter , and B. R. Boycott. 1984. Abdominal fat deposition and sudden death syndrome in broilers : the effects of restricted intake, early life caloric (fat) restriction, and calorie : protein ratio. Poult. Sci. 63 : 1190-1200. Morgan, N. G. and S. Dhayal. 2009. G-protein coupled receptors mediating long chain fatty acid signaling in the pancreatic beta-cell. Biochem. Pharmacol. 78 : 1419-1427. Mulder, H., S. Yang, M. S. Winzell, C. Holm, and B. Ahren. 2004. Inhibition of lipase activity and lipolysis in rat islets reduces insulin secretion. Diabetes. 53 : 122-128. Newsholme, P., D. Morgan, E. Rebelato, H. C. Oliveira-Emilio, J. Procopio, R. Curi, and A. Carpinelli. 2009. Insights into the critical role of NADPH oxidase(s) in the normal and dysregulated pancreatic beta cell. Diabetologia. 52 : 2489-2498. Nolan, C. J., M. S. Madiraju, V. Delghingaro-Augusto, M. L. Peyot, and M. Prentki. 2006. Fatty acid signaling in the {beta}-cell and insulin secretion. Diabetes. 55 : S16-S23. Nolan, C. J., M. S. Madiraju, V. Delghingaro-Augusto, M. L. Peyot, and M. Prentki. 2006. Fatty Acid Signaling in the beta-Cell and Insulin Secretion. Diabetes. 55 : S16-S23. Northwood, I. C., A. H. Tong, B. Crawford, A. E. Drobnies, and R. B. Cornell. 1999. Shuttling of CTP : Phosphocholine Cytidylyltransferase between the Nucleus and Endoplasmic Reticulum Accompanies the Wave of Phosphatidylcholine Synthesis during the G0 3 G1 Transition. J. Biol. Chem. 274 : 26240-26248. Noyan, A., W. J. Lossow., N. Brot, and I. L. Chaikoff. 1964. Pathway and form of absorption of palmitic acid in the chicken. .J. Lipid Res. 5 : 538-541. O’Hea, E. K. and G. A. Leveille. 1969. Lipid biosynthesis and transport in the domestic chick (Gallus domesticus). Comp. Bioch. Physiol. 30 : 149. Ohlson, L. O., B. Larsson, K. Svärdsudd, L. Welin, H. Eriksson, L. Wilhelmsen, P. Björntorp, and G. Tibblin. 1985. The influence of body fat distribution on the incidence of diabetes mellitus. 13.5 years of follow-up of the participants in the study of men born in 1913. Diabetes. 34 : 1055-1058. Orci, L., M. Amherdt, F. Malaisse-Lagae, M. Ravazzola, W. J. Malaisse, A. Perrelet, and A. E. Renold. 1976. Islet cell membrane alteration by diabetogenic drugs. Lab. Invest. 34 : 451-454. Perry, D. K. and Y. A. Hannun. 1998. The role of ceramide in cell signaling. Biochim. Biophys. Acta. 1436 : 223-243. Peyot, M. L., C. Guay, M. G. Latour, J. Lamontagne, R. Lussier, M. Pineda, N. B. Ruderman, G. Haemmerle, R. Zechner, E. Joly, S. R. Madiraju, V. Poitout, and M. Prentki. 2009. Adipose triglyceride lipase is implicated in fuel- and non-fuel-stimulated insulin secretion. J. Biol. Chem. 284 : 16848-16859. Poitout, V. and R. P. Robertson. 2002. Minireview : secondary beta-cell failure in type 2 diabetes-a convergence of glucotoxicity and lipotoxicity. Endocrinology. 143 : 339-342. Postic, C., M. Shiota, and M. A. Magnuson. 2001. Cell-specific roles of glucokinase in glucose homeostasis. Recent Prog. Horm. Res. 56 : 195-217. Prentki, M. and B. E. Corkey. 1996. Are the β-cell signaling molecules malonyl-CoA and cytosolic long-chain acyl-CoA implicated in multiple tissue defects of obesity and NIDDM? Diabetes. 45 : 273-283. Prentki, M., S. Vischer, M. C. Glennon, R. Regazzi, J. T. Deeney, and B. E. Corkey. 1992. Malonyl-CoA and long chain acyl-CoA esters as metabolic coupling factors in nutrient-induced insulin secretion. J. Biol. Chem. 267 : 5802-5810. Rana, R. S., R. J. Mertz, A. Kowluru, J. F. Dixon, L. E. Hokin, and M. J. MacDonald. 1985. Evidence for glucose-responsive and -unresponsive pools of phospholipid in pancreatic islets. J. Biol. Chem. 260 : 7861-7867. Rasouli, N., B. Molavi, S. C. Elbein, and P. A. Kern. 2007. Ectopic fat accumulation and metabolic syndrome. Diabetes Obes. Metab. 9 : 1-10. Reddy, J. K. and M. S. Rao. 2006. Lipid metabolism and liver inflammation. II. Fatty liver disease and fatty acid oxidation. Am. J. Physiol. Gastrointest. Liver Physiol. 290 : G852-G858. Remedi, M. S., J. V. Rocheleau, A. Tong, B. L. Patton, M. L. McDaniel, D. W. Piston, J. C. Koster, and C. G. Nichols. 2006. Hyperinsulinism in mice with heterozygous loss of K (ATP) channels. Diabetologia. 49 : 2368-2378. Ribaux, P., J. A. Ehses, N. Lin-Marg, F. Carrozzino, M. Böni-Schnetzler, E. Hammar, J. C. Irminger, M. Y. Donath, and P. A. Halban. 2007. Induction of CXCL1 by extracellular matrix and autocrine enhancement by interleukin-1 in rat pancreatic beta-cells. Endocrinology. 148 : 5582-5590. Richards, M. P. 2003. Genetic regulation of feed intake and energy balance in poultry. Poult. Sci. 82 : 907-916. Rippe, J. M., S. Crossley, and R. Ringer. 1998. Obesity as a Chronic Disease : Modern Medical and Lifestyle Management. J. Am. Diet Assoc. S9-S15. Ritz-Laser, B., P. Meda, I. Constant, N. Klages, A. Charollais, A. Morales, C. Magnan, A. Ktorza, and J. Philippe. 1999. Glucose-induced preproinsulin gene expression is inhibited by the free-fatty acid palmitate. Endocrinology. 140 : 4005-4014. Rolz, W., C. Xin, SRen, J Pfeilschifter, and A. Huwiler. 2003. Interleukin-1 beta inhibits ATP-induced protein kinase B activation in renal mesangial cells by two different mechanisms : the involvement of nitric oxide and ceramide. Br. J. Pharmacol 138 : 461-468. Sako, Y. and V. E. Grill. 1990. Coupling of β-cell desensitization by hyperglycemia to excessive stimulation and circulating insulin in glucose-infused rats. Diabetes. 39 : 1580-1583. Sarbassov, D. D., S. M. Ali, S. Sengupta, J. H. Sheen, P. P. Hsu, A. F. Bagley, A. L. Markhard, and D. M. Sabatini. 2006. Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol. Cell. 22 : 159-168. Schonfeld, P. and L. Wojtczak. 2008. Fatty acids asmodulators of the cellular production of reactive oxygen species. Free Radic. Biol. Med. 45 : 231-241. Segall, L., N. Lameloise, F. Assimacopoulos-Jeannet, E. Roche, P. Corkey, S. Thumelin, B. E. Corkey, and M. Prentki. 1999. Lipid rather than glucose metabolism is implicated in altered insulin secretion caused by oleate in INS-1 cells. Am. J. Physiol. 277 : E521-E528. Seghers, V., M. Nakazaki, F. DeMayo, L. Aguilar-Bryan, and J. Bryan. 2000. Sur1 knockout mice. A model for K (ATP) channel independent regulation of insulin secretion. J. Biol. Chem. 275 : 9270-9277. Seufert, J., G. C. Weir, and J. F. Habener. 1998. Differential expression of the insulin gene transcriptional repressor CCAAT/enhancer-binding protein beta and transactivator islet duodenum homeobox-1 in rat pancreatic β-cells during the development of diabetes mellitus. J. Clin. Invest. 101 : 2528-2539. Shimabukuro, M., M. Higa, Y. T. Zhou, M. Y. Wang, C. B. Newgard, and R. H. Unger. 1998. Lipoapoptosis in β-cells of obese prediabetic fa/fa rats. Role of serine palmitoyltransferase overexpression. J. Biol. Chem. 273 : 32487-32490. Shimabukuro, M., M. Higa, Y. T. Zhou, M. Y. Wang, C. B. Newgard, and R. H. Unger. 1998. Lipoapoptosis in beta-cells of obese prediabetic fa/fa rats. Role of serine palmitoyltransferase overexpression. J. Biol. Chem. 273 : 32487-32490. Shimabukuro, M., Y. T. Zhou, M. Levi, and R. H. Unger . 1998. Fatty acid-induced cell apoptosis : a link between obesity and diabetes. Proc. Natl. Acad. Sci. USA 95 : 2498-2502. Shiota, C., O. Larsson, K. D. Shelton, M. Shiota, A. M. Efanov, M. Hoy, J. Lindner, S. Kooptiwut, L. Juntti-Berggren, J. Gromada, P. O. Berggren, and M. A. Magnuson. 2002. Sulfonylurea receptor type 1 knock-out mice have intact feeding-stimulated insulin secretion despite marked impairment in their response to glucose. J. Biol. Chem. 277 : 37176-37183. Sjoholm, A. 1995. Ceramide inhibits pancreatic beta-cell insulin production and mitogenesis and mimics the actions of interleukin-1 beta. FEBS. Lett. 367 : 283-286. Snapir, N. and B. Robinzon. 1989. Role of the basomedial hypothalamus in regulation of adiposity, food intake, and reproductive traits in the domestic fowl. Poult. Sci 68 : 948-957. Spinas, G. A., J. P. Palmer, T. Mandrup-Poulsen, H. Andersen, J. H. Nielsen, and J. Nerup. 1988. The bimodal effect of interleukin 1 on rat pancreatic beta-cells-stimulation followed by inhibition-depends upon dose, duration of exposure, and ambient glucose concentration. Acta. Endocrinol. 119 : 307-311. Stein, D. T., B. E. Stevenson, M. W. Chester, M. Basit, M. B. Daniels, S. D. Turley, and J. D. McGarry. 1997. The insulinotropic potency of fatty acids is influenced profoundly by their chain length and degree of saturation. J. Clin. Invest. 100 : 398-403. Stein, D. T., V. Esser, B. E. Stevenson, K. E. Lane, J. H. Whiteside, M. B. Daniels, S. Chen, and J. D. McGarry. 1996. Essentiality of circulating fatty acids for glucose-stimulated insulin secretion in the fasted rat. J. Clin. Invest. 97 : 2728-2735. Stellenwerf, W. A. Jr. and R. L. Hazelwood. 1979. Peripheral utilization of glucose load after alloxan and streptozotocin in the rat and chicken : a comparison. Gen. Comp. Endocrinol. 39 : 131-140. Straub, S. G. and G. W. Sharp. 2004. Hypothesis : one rate-limiting step controls the magnitude of both phases of glucose-stimulated insulin secretion. Am. J. Physiol. Cell Physiol. 287 : C565-571. Tajiri, Y., C. Moller, and V. Grill. 1997. Long term effects of aminoguanidine on insulin release and biosynthesis : evidence that the formation of advanced glycosylation end products inhibits β-cell function. Endocrinology. 138 : 273-280. Tanaka, Y., C. E. Gleason, P. O. T. Tran, J. S. Harmon, and R. P. Robertson. 1999. Prevention of glucose toxicity in HIT-T15 cells and Zucker diabetic fatty rats by antioxidants. Proc. Natl. Acad. Sci. USA 96 : 10857-10862. Thorens, B., G. C. Weir, J. L. Leahy, H. F. Lodish, and S. Bonner-Weir. 1990. Reduced expression of the liver/beta-cell glucose transporter isoform in glucose-insensitive pancreatic beta cells of diabetic rats. Proc. Natl. Acad. Sci. USA 87 : 6492-6496. Tiedge, M, S. Lortz, J. Drinkgern, and S. Lenzen. 1997. Relation between antioxidant enzyme gene expression and antioxidative defense status of insulinproducing cells. Diabetes. 46 : 1733-1742. Toda, Y., J. Tsukada, M. Misago, Y. Kominato, P. E. Auron, and Y. Tanaka. 2002. Autocrine induction of the human pro-IL-1beta gene promoter by IL-1beta in monocytes. J. Immunol. 168 : 1984-1991. Toschi, A., E. Lee, L. Xu, A. Garcia, N. Gadir, and D. A. Foster. 2009. Regulation of mTORC1 and mTORC2 complex assembly by phosphatidic acid -a competition with rapamycin. Mol. Cell. Biol. 29 : 1411-1420. Trayhurn, P. and I. S. Wood. 2005. Signalling role of adipose tissue : adipokines and inflammation in obesity. Biochem. Soc. Trans. 33 : 1078-1081. Tsuruzoe, K., E. Araki, N. Furukawa, T. Shirotani, K. Matsumoto, K. Kaneko, H. Motoshima, K. Yoshizato, A. Shirakami, H. Kishikawa, J. Miyazaki, and M. Shichiri. 1998. Creation and characterization of a mitochondrial DNA-depleted pancreatic beta-cell line : impaired insulin secretion induced by glucose, leucine, and sulfonylureas. Diabetes. 47 : 621-631. Turk, J., B. A. Wolf, J. B. Lefkowith, W. T. Stump, and M. L. McDaniel. 1986. Glucose-induced phospholipid hydrolysis in isolated pancreatic islets : quantitative effects on the phospholipid content of arachidonate and other fatty acids. Biochim. Biophys. Acta. 879 : 399-409. Turrens, J. F. 2003. Mitochondrial formation of reactive oxygen species. J. Physiol. 552 : 335-344. Unger, R. H. 2003. Minireview : weapons of lean body mass destruction : the role of ectopic lipids in the metabolic syndrome. Endocrinology. 144 : 5159-5165. Unger, R. H. and L. Orci. 2002. Lipoapoptosis : its mechanism and its diseases. Biochim. Biophys. Acta. 1585 : 202-122. Vincent, P. 2008. Phospholipid hydrolysis and insulin secretion : a step toward solving the Rubik’s cube. Am. J. Physiol. Endocrinol. Metab. 294 : E214-E216. Wakelam, M. J. O. 1998. Diacylglycerol : when is it an intracellular messenger? Biochim. Biophys. Acta. 1436 : 117-126. Wanders, R. J. and H. R. Waterham. 2006. Biochemistry of mammalian peroxisomes revisited. Annu. Rev. Biochem. 75 : 295-332. Wang, Y. Z., Y. B. Chang, C. Xing, and D. Fu. 1998. The interference effects of hexadecylphosphocholine on proliferation and membrane phospholipid metabolism in human myeloid leukemia cell lines. Int. J. Tissue React. 20 : 101-107. Warner, S. J., K. R. Auger, and P. Libby. 1987. Human interleukin 1 induces interleukin 1 gene expression in human vascular smooth muscle c
現今的白肉雞因快速生長選拔,使得雞隻伴隨著食慾調節以及能量平衡調控的喪失,進而導致攝食過量 (hyperphagia) 與肥胖。肥胖使體內過多的脂肪堆積在非脂肪組織時,會造成細胞發炎反應、脂肪酸氧化形成活性氧以及一些具生物活性脂肪衍生物的產生,進而對細胞造成細胞毒性,使細胞功能異常甚至造成細胞死亡,這種現象稱為脂肪中毒 (lipotoxicity)。相較於哺乳類,禽類具有高血糖、高血酯、高胰島素血症以及胰島素低敏感性,且禽類胰臟β細胞對葡萄糖刺激較不敏感,長期處於高血糖狀態下,不會產生類似哺乳類糖尿病的現象。利用alloxan或streptozotocin (STZ) 等對胰臟細胞具有毒性的化學藥物處理雞隻,不會影響葡萄糖耐受性或是改變血液中胰島素濃度以及葡萄糖刺激之胰島素分泌。葡萄糖會誘發胰島中磷脂的水解,提高鈣離子進入細胞,增強胰島素分泌。胰臟β-cells磷脂的合成乃為了補充胞膜上磷脂水解與胰島素分泌時所減少之脂質,胰島中主要的磷脂為磷脂醯膽鹼 (PC),研究指出增加細胞內PC合成或外源性添加PC皆可改善細胞凋亡的情形,因此PC合成是調節β細胞功能以及胰島素釋放重要的機制。本研究假設雞隻胰臟對葡萄糖較不敏感可能是胰臟細胞在營養過剩下的自我保護機制。試驗以白肉種母雞給予任飼與限飼,並於任飼處理7天與21天時取樣,分析在任飼或限飼下對屠體性狀以及生理代謝之影響。結果顯示任飼組體重、絕對腹脂重與相對腹脂比率皆較高,而絕對胰臟重與相對胰臟比率則是限飼組較高,此顯示以任飼處理之白肉種雞已出現肥胖的傾向。在任飼處理21天後,飢餓時血液中葡萄糖濃度任飼組較高,NEFA濃度則是限飼組較高 ; 飽食顯著提高限飼組血液中胰島素濃度,但任飼組則不受影響。任飼處理7天或21天顯著提高胰臟中三酸甘油脂 (TG)、IL-1β與ceramide含量。此結果顯示任飼處理21天的雞隻胰臟已出現肥胖造成脂肪代謝異常與可能脂肪中毒之現象。胰臟中PC含量不論在任飼處理7天或任飼處理21天,皆為任飼組較高,胰臟中CTP1與PEMT這兩個合成PC主要之酵素mRNA表現,只有PEMT mRNA含量在任飼處理7天後,任飼組較限飼組高,然而任飼處理21天時,PEMT mRNA含量為限飼組較高,且餵食後1小時任飼組血液胰島素濃度沒有提高,胰臟中insulin mRNA含量不論在任飼處理7天或任飼處理21天,兩組間皆無差異,此結果顯示胰臟細胞提高PC合成並非用在補充葡萄糖所誘發的磷脂水解與胰島素分泌的損失,而是用來保護細胞對抗脂肪中毒。胰臟中SMase與SPT這兩個ceramide形成主要之酵素mRNA表現,SMase mRNA含量在任飼處理21天時任飼組較低,而SPT mRNA含量不論任飼處理7天或任飼處理21天任飼組皆較高,這兩個基因表現結果與胰臟中神經鞘磷脂 (sphingomyelin)以及ceramide含量在任飼組皆較高的結果一致。同時胰臟中SOD活性在任飼處理7天時任飼組較高,而任飼處理21天無差異 ; 胰臟中GSH含量在任飼處理21天時,任飼組顯著高於限飼組,這些結果顯示長期任飼引發肥胖與可能的脂肪中毒現象,而此現象可藉由提高胰臟中GSH、PC與SPM含量,降低胰島素分泌的敏感性以及活性氧的釋出得到舒緩,推測此現象可能是胰臟細胞自我保護機制來對抗肥胖引起脂肪中毒之傷害。

Genetic selection for rapid growth is accompanied by a loss of satiety regulation and energy homeostasis leading to a propensity of hyperphagia and obesity in modern broiler chickens. Obesity results in excessive fatty acid accumulation in non-adipose tissues leading to inflammatory responses, oxidative damage due to excessive β-oxidation, and bioactive lipid derivatives may cause cell dysfunction or apoptosis. This phenomenon is called “lipotoxicity”. In contrast to mammals, birds are characterized by hyperglycemia, hyperinsulinemia, and insulin resistance. Chronic hyperglycemia without diabetic conditions in birds has puzzled scientists for decades. Chicken pancreatic beta-cells are relatively insensitive to glucose stimulation in insulin secretion. Cytotoxin treatment such as alloxan or streptozotocin (STZ) for chemical pancreatectomy in chickens failed to cause glucose intolerance and alter basal plasma insulin concentrations or glucose-induced insulin secretion. Stimulation of pancreatic islets with glucose induces phospholipid hydrolysis, which amplifies the glucose-induced Ca2+ entry into islet β-cells to trigger insulin secretion. In addition, phospholipid synthesis is required to replenish lipid loss during the hydrolysis and insulin secretion. Phosphatidylcholine (PC) is a major component of the phospholipid fractions of islet cells. Increased PC synthesis or exogenous PC treatment has been known to rescue cell death. Thus, the synthesis of PC is an important regulatory process in β-cell function and insulin release. In this study, we hypothesized that the insensitivity of chicken pancreas may sperat through a cytoprotective mechanism against glucose and lipid insults. Broiler breeder hens were fed ad libitum or restricted feeding and examined the effect of body composition and physiological response. Results showed that body weight, absolute and relative abdominal fat weight were higher in ad libitum hens than their restricted counterparts, but absolute and relative pancreas weight were higher in restricted hens, suggesting that chickens fed ad libitum has developed into obesity. Plasma glucose levels were higher in hens fed ad libitum for 21 days, but plasma NEFA levels were higher in restricted hens. Plasma insulin levels were increased in restricted hens after one hour refeeding but this re-feeding induced increased of plasma insulin level was absent in hens fed ad libitum. Ad libitum feeding for 7 days or 21 days also promoted pancreatic TG, IL-1β, ceramide, but suppressed AKT activition, suggesting susceptible lipotoxicity and dysregulations in the hens under voluntary feeding. However, pancreatic phosphatidylcholine (PC) contents were higher in hens under ad libitum feeding for 21day. Expression of CTP1, the key enzyme for PC de novo synthesis was not affected by ad libitum feeding. Moreover, PEMT mRNA expression was higher in hens fed ad libitum for 7 days, but lower under ad libitum feeding for 21days, when compared to those of restricted hens. In combination with unchanged plasma insulin levels one hour after refeeding and pancreatic insulin mRNA levels in hens fed ad libitum, the results suggested that pancreas may protect cells against lipotoxicity through increasing pancreatic PC content. Pancreatic SPT mRNA expression was increased in hens under ad libitum feeding for both 7 days and 21days, but SMase expression was suppressed after ad libitum feeding for 21 days when compared to restricted hens. These results were consistent with pancreatic sphingomyelin and ceramide content in the hens under voluntary feeding regimen. Pancreatic SOD activity was promoted after ad libitum feeding for 7 days but resumed to no change after 21 days, and meanwhile GSH content was increased after 21-day ad libitum feeding. Taken together, these results suggest that prolong voluntary feeding in hens results in obesity and susceptible lipotoxicity in the pancreas. This lipotoxic development is likely to be ameliorated in the pancreas of chickens against excessive fuel insults, theory operation to increase glutathione and SPM content and PC synthesis, and decrease the sensitivity if insulin secretion and ROS generation.
其他識別: U0005-2608201117440400
Appears in Collections:動物科學系

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.