Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/2515
標題: 利用數位微反射鏡與全像光學元件之同軸全像儲存系統
Collinear Holographic Storage System Using Digital Micromirror Device and Holographic Optical Element
作者: 林俊薰
Lin, Chun-Hsun
關鍵字: digital micromirror device;數位微反射鏡;holographic optical element;collinear holographic storage system;binary optics;全像光學元件;同軸式全像儲存系統;二元光學
出版社: 機械工程學系所
引用: [1] J. Ashley, M. P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. Macfarlane, R. M. Shelby, and G. T. Sincerbox, “Holographic data storage”, IBM Journal of Research and development, 44, no.3, p.341-368, (2000) [2] D. Garbor, “A new Microscopic principle”, Nature, 161, p.777-778, (1948) [3] A. Ashkin, G. D. Boyd, J. M. Dziedeic, R. G. Smith, A. A. Bullman, J. J. Lecinstein, and K. Nassau, “Optical-induced refractive index in homogeneity in LiNbO3”, Applied Physics Letters, 9, no.1, p.72-74, (1966) [4] F. S. Chen, “Optically induced change of refractive indices in LiNbO3 and LiTaO3”, Japanese Journal of Applied Physics, 40, p.336-339, (1969) [5] J. Feinberg, D. Heiman, A. R. Tanguay, and . W. Hellwarth, “Photorefractive effects and light-induced charge migration in barium titanate”, Japanese Journal of Applied Physics, 51, p.1297-1350, (1980) [6] E. N. Leith and J. Upatnieks, “Wavefront reconstruction with diffused and three dimensional objects”, Journal of the Optical Society of America, 54, p.1295-1301, (1964) [7] H. Horimai, X. Tan, J. Li, “Collinear holographic”, Applied Optics, 44, no.13, p.2575-2579, (2005) [8] X. Tan, H. Horimai, “Collinear technology for holographic storage system”, Proceeding of SPIE, 6343, p.62432W1-62432W9, (2006) [9] H. Horimai, L. Hesselink and M. Inoue, “Volumetric optical disk storage with collinear polarized holography”, Optical Memory and Optical Data Storage Topical Meeting, p.43-44, (2002) [10] H. Horimai, L. Jun, “A novel collinear optical setup for holographic data storage system”, Proceeding of SPIE, 5380, p.297-303, (2004) [11] 謝冠群, “應用全像光學元件之新式微型光學讀取頭設計”, 國立中興大學機械工程學系碩士論文, (民國96 年) [12] K. Ryuich, M. Shunichi, K. Yuichi, and Y. Yutaka, “Radial and Tangential Tilt Detection for Rewritable Optical Disks”, Japanese Journal of Applied Physics, 40, p.1684-1693, (2001) [13] H. F. Shih, Y. C. Lee, Y. Chiu and G. D. Lin, “Optical head design using prism-type holographic optical element for small form factor applications”, Proceeding of SPIE, 6827, p.16 (2007) [14] “光機電系統整合概論” , 國家實驗研究室儀科科技中心出版, (2005) [15] Texas Instruments, DLP 2005 InfoComm presentation, http://www.dlp.com/ [16] 徐統, “繞射物理學”, 徐氏基金會, (民國76 年) [17] E. Hecht, “Optics”, Fourth Edition, Pearson Education, (2002) [18] H. F. Shih, C. L. Chang, K. J. Lee, and C. S. Chang, “Design of optical head with holographic optical element for small form factor drive systems”, IEEE Transactions on Magnetics, 41, no.2, p.1058-1060, (2005) [19] 蔡易倫, “應用全像光學元件之同軸儲存系統的研究”, 國立中興大學機械工程學系碩士論文, (民國98 年) [20] H. F. Shih, “Optical head with two wavelengths in single path using holographic optical element”, Japanese Journal of Applied Physics, 44, p.1797-1802, (2005) [21] W. H. Lee, “Diffractive optics for data storage”, Proceeding of SPIE, 2383, p.390-395, (1995) [22] 蕭宏, “半導體製程技術導論”, 歐亞書局, (民國90 年)
摘要: 
在本研究中,提出一個利用數位微反射鏡(digital micromirror device, DMD)與全像光學元件(holographic optical element, HOE)之同軸式全像儲存系統(collinear holographic data storage system),並以實現積體化同軸式全像儲存系統為目的。在光路架構係參考Optware公司之同軸式全像資料儲存系統與微型光讀寫頭(small form factor optical pickup head, SFFOPH)架構。此新式的全像儲存系統包含全像光學元件、數位微反射鏡、波長532nm之綠光雷射及聚焦物鏡。系統中的全像光學元件具有繞射、修正像差及提供聚焦誤差訊號功能,而數位微反射鏡則是利用電腦驅動輸出二維資料頁影像於系統中。
本論文主要可分為三個部份,第一個部份為利用光學軟體對儲存系統進行設計,並利用加入全像光學元件於光學架構中來達到減少系統光學元件數目與縮簡光路系統。第二部份則以二元光學(binary optics)的方法近似全像光學元件之相位多項式係數並利用半導體微影(photolithography)及蝕刻(etching) 實現其繞射圖形,爾後再將元件進行光學效率量測,並使用原子力顯微鏡觀察是否達到設計的需求。最後將量測後之光學元件架設於該光路系統並驗證此同軸式全像儲存系統的成效,確認CCD由全像光學元件的負一階繞射光取得儲存的影像圖形,而光偵測器則由正一階繞射光取得聚焦誤差訊號。

In this study, we present a collinear holographic storage system, which uses the digital micromirror device (DMD) and the holographic optical element (HOE), in order to realize an integrated collinear holographic storage system. We combine the system of the small-form-factor optical pickup head (SFFOPH) with the collinear holographic storage system which has been proposed by the Optware Corporation. The storage system consists of an HOE, a DMD, a green light laser with the wavelength of 532nm, and an objective lens. The functions of the HOE include diffraction, aberration-correcting, and servo-signal generation. The DMD is driven by the computer and outputs a 2-D page data in the system.
There are three parts in the thesis. First, we designed the storage system by the optical simulation software, simplified the optical system, and reduced the number of optical components by adding the HOE. Secondly, we approximated the phase polynomial coefficients of the HOE by binary optics, and obtained its diffraction pattern by the etching processes after the photolithography. Subsequently, we measured the optical efficiencies of the HOE and then used the atomic force microscope (AFM) to verify if the requirements of the design were met. Finally, we set up the optical system to examine the effect of an integrated collinear holographic storage system. The experimental results show that the CCD receives the image pattern of the stored data from the HOE in the negative-one diffraction order and the photo detector receives the focusing error signal (FES) from the same HOE in the positive-one diffraction order.
URI: http://hdl.handle.net/11455/2515
其他識別: U0005-2308201015570500
Appears in Collections:機械工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.