Please use this identifier to cite or link to this item:
標題: 利用高分子穩固型液晶之多模式菲涅耳透鏡
Multi-Mode Fresnel Lens Using Polymer-Stabilized Liquid Crystal
作者: 李劭祁
Li, Shao-Chi
關鍵字: liquid crystal;液晶;polymer stabilized liquid crystal;Fresnel lens;diffractive optical element;高分子穩固液晶;菲涅耳透鏡;繞射光學元件
出版社: 機械工程學系所
引用: [1]W. C. Hung, Y. J. Chen, C. H. Lin, I. M. Jiang, and T. F. Hsu, “Sensitive voltage-dependent diffraction of a liquid crystal Fresnel lens”, Applied Optics, vol. 48, No. 11, p. 2094-2098 (2009) [2]L. C. Lin, H. C. Jau, T. H. Lin, and A. Y. G. Fuh, “Highly efficient and polarization-independent Fresnel lens based on dye-doped liquid crystal”, Optics Express, vol. 15, No. 6, p. 2900-2906 (2007) [3]T. H. Lin, Y. Huang, A. Y. G. Fuh, and S. T. Wu, “Polarization controllable Fresnel lens using dye-doped liquid crystals”, Optics Express, vol. 14, No. 6, p. 2359-2364 (2006) [4]M. Honma, and T. Nose, “Liquid-crystal Fresnel zone plate fabricated by microrubbing”, Japanese Journal of Applied Physics, vol. 44, No. 1A, p. 287–290 (2005) [5]C. R. Lee, K. C. Lo, and T. S Mo, “Electrically Switchable Fresnel Lens Based on a Liquid Crystal Film with a Polymer Relief Pattern”, Japanese Journal of Applied Physics, vol. 46, No. 7A, p. 4144–4147 (2007) [6]P. Valley, D. L. Mathine, M. R. Dodge, J. Schwiegerling, G. Peyman, and N. Peyghambarian, “Tunable-focus flat liquid-crystal diffractive lens”, Optics Letters, vol. 35, No. 3, p. 336-338 (2010) [7]H. Ren, Y. H. Fan, and S. T. Wua, “Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals”, Applied Physics Letters, vol. 83, No. 8, p. 1515-1517 (2003) [8]C. Y. Huang, Y. J. Huang, and Y. H. Tseng, “Dual-operation-mode liquid crystal lens”, Optics Express, vol. 17, No. 23, p. 20860-20865 (2009) [9]B. Wang, M. Ye, and S. Sato, “Properties of Liquid Crystal Lens with Stacked Structure of Liquid Crystal Layers”, Japanese Journal of Applied Physics, vol. 45, No. 10A, p. 7813-7818 (2006) [10]M. Ye, B. Wang, and S. Sato, “Liquid crystal lens with focal length variable from negative to positive values”, IEEE Photonics Technology Letters, vol. 18, No 1, p.78-81 (2006) [11]M. Ye, B. Wang, and S. Sato, “Liquid crystal lens with a focal length that is variable in a wide range”, Applied Optics, vol. 43, p.6407-6412 (2004) [12]M. Ye, B. Wang, and S. Sato, “Realization of liquid crystal lens of large aperture and low driving voltages using thin layer of weakly conductive material”, Optics Express, vol. 16, No. 6, p.4302-4308 (2008) [13]H. Ren, D. W. Fox, B. Wu, and S. T. Wu, “Liquid crystal lens with large focal length tenability and low operating voltage”, Optics Express, vol. 15, No. 18, p. 11328-11335 (2007) [14]A. K. Kirby, P. J. W. Hands, and G.. D. Love, “Liquid crystal multi-mode lenses and axicons based on electronic phase shift control”, Optics Express, vol. 15, No. 21, p. 13496-13501 (2007) [15]金國藩 等著, “二元光學”, 國防工業出版社 (1998) [16]P. Yeh and C. Gu, “Optics of liquid crystal displays”, John Wiley & Sons (1999) [17]游漢輝, “傅氏光學”, 滄海書局 (民國93年) [18]李柏緯, “多模式液晶繞射光學元件之研究”, 國立中興大學機械工程學系碩士論文 (民國95年) [19]林罡鼎, “新式可變焦距液晶補償器之研究”, 國立中興大學機械工程學系碩士論文 (民國97年) [20]松本正一 等著, “液晶的基礎與應用”, 國立編譯館 (1996) [21]D. K. Cheng, “Fundamentals of engineering electromagnetics”, Prentice-Hall (1993) [22]林宗賢, “液晶光子晶體雷射現象與其光控制研究”, 國立成功大學物理研究所碩士論文 (民國93年) [23]P. G. de Gennes and J. prost, “The physics of Liquid Crystal”, 2nd ed., Clarendon Press, Oxford (1993) [24]E. Hecht, “Optics”, Fourth Edition, Pearson Education (2002) [25]S. Sinzinger, J. Jahns, “Microoptics”, Second Edition, WILEY-VCH (2003) [26]梁銓廷, “物理光學”, 電子工業出版社 (2008)
透鏡為一般光學系統中不可或缺的元件,然而一般傳統的光學透鏡,其結構體積過大,在往微小化發展上有了限制,因此本研究根據液晶之雙折射性質(birefringence)與其受電場影響而重新轉向之光電特性,在融合高分子穩固液晶技術(polymer dispersion)與電極之設計,設計出單一元件具多種模式之液晶菲涅耳透鏡(Fresnel lens),因其體積僅來自於玻璃材料之厚度,因此元件可達成微小化及多種焦距之特性。

The lens is an indispensable component for a general optical system, but its large structure would have some restrictions on the development of reducing the device dimension. This study is based on two characteristics of liquid crystal (LC), which are the birefringence and the electro-optical activity of alignment by the electric field. We demonstrate the LC Fresnel lens with multi-modes by using the technologies of polymer stabilized liquid crystal (PSLC) and electrode pattern design. Moreover, owing to the dependence of glass thickness for the device size, the device of the whole module can be microminiaturized and the focal variation achieved.
With the simulations by scalar diffraction theory, the diffraction efficiency of the device has been discussed. Then, we adopted the lens module of a cell phone with the fixed focal length as the simulation model and discussed the image changes from different diffraction modes with the aid of the optical design software. In fabrication, we demonstrated the monolithic liquid crystal Fresnel lens with triplex diffraction modes using the techniques of mixing LC and UV-curable monomer (RM257) as the device material and designing novel electrodes. The experiments show that the diffraction patterns projected on the screen can be switched under different diffraction modes. Besides, the input image will also produce different image formations corresponding to different diffraction modes. The focusing of the LC lens is tunable by adjusting the applied voltage. In this research, we successfully combine different types of Fresnel electrode pattern in a diffractive optical element and make the multi-mode LC lens possible.
其他識別: U0005-2308201016151800
Appears in Collections:機械工程學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.