Please use this identifier to cite or link to this item:
標題: 不同品種豬隻H-FABP, RN, CRC, CA3, ESR 與 PRLR基因型之比較
Comparisons of H-FABP, RN, CRC, CA3, ESR and PRLR Genotypes among Different Breeds of Pigs
作者: 趙蓓娜
Jamwan, Pratthana
關鍵字: H-FABP;H-FABP;RN;CRC;CA3;ESR;PRLR;genotyping;pigs;RN;CRC;CA3;ESR;PRLR;基因型分析;豬
出版社: 動物科學系所
引用: Anderson, L. 2003. Identification and characterization of AMPKγ3 mutation in the pig.Biochem. Soc. T. 31:232-235. Bole-Feysot, C., V. Goffin, M. Edery, N. Binart, and P. A. Kelly. 1998. Prolactin (PRL)and its receptor: actions, signal transduction pathways and phenotypes observed in PRL receptor knockout mice. Endocr. Rev. 19:225-268. Breton, S. 2000. The cellular physiology of carbonic anhydrase. J. Panreas. 2:159-164. Boutin, J. M., C. Jolicoeur, H. Okamura, J. Gagnon, M. Edery, M. Shirota, D. Banville, I.Dusanter-Fourt, J. Djiane, and P. A. Kelly. 1988. Cloning and expression of therat prolactin receptor, a member of the growth hormone/prolactin receptor genefamily. Cell 53:69-77. Bugalho, M. J. , R. Domingues, and L. Sobrino. 2002. The minisequencing method: a simple strategy for genetic screening f MEN 2 families. BMC Genet. 3:1471-1475. Buske, B., I. Strenstein, and G. Brockmann. 2006. QTL and candidate genes for fecundity in sows. Anim. Reprod. Sci. 95:167-183. Carr, C. C., J. B. Morgan, E. P. Berg, S. D. Carter, and F. K. Ray. 2006. Growth performance, carcass composition, quality, and enhancement treatment of fresh pork identified through deoxyribonucleic acid marker-assisted selection for the Rendement Napole gene. J. Anim. Sci. 84:910-917. Carolino, I., A. Vicente, C. O. Sousa, and L. T. Gama. 2007. SNaPshot based genotyping of the RYR1 mutation in Portuguese breeds of pigs. Livest. Sci. 111:264-269. Chamberlain, J. S., R. A. Gibbs, J. E. Ranier, P. N. Nguyen, and C. T. Caskey. 1988. Deletion screening of the Duchenne muscular dystrophy locus via multiplex DNA amplification. Nucleic Acids Res. 16: 11141-11156. Chang, T., Y. Y. Sung, Y. N. Jiang, P. H.Wan, C. H. Yang, C. C. Chang, K. Yang, and C. Kobayashi. 1998. The effects on the semen trait of the stress genotypic pigs in high environmental temperature in Taiwan. Proc. the 8th World Conference on Animal Production, Contributed papers - Vol. II: 250-251. June 28-July 4, Seoul, Korea. Chmurzyńska, A. 2006. The multigene of fatty acid-binding proteins (FABPs): function, structure and polymorphism. J. Appl. Genet. 47:39-48. Chu, S., and Fuller. 1997. Identification of a splice variant of the rat estrogen receptor β gene. Mol. Cell. Endocrinol. 132:195-199. Ciobanu, D., J. Bastiaansen, M. Malek, J. Helm, J.Woollard, G. Plastow, and M. Rothschild. 2001. Evidence for new alleles in the protein kinase adenosine monophosphate activated γ3-subunit gene associated with low glycogen content in pig skeletal muscle and improved meat quality. Genetics. 159:1151-1162. Côté, C., H. Riverin, M. J. Barras, R. R. Tremblay, P. Fremont, and J. Frenette. 1993. Effect of carbonic anhydrase-III inhibition on substrate utilization and fatigue in rat soleus. Can. J. Physiol. Pharmacol. 71:277-283. Davoli, R., L. Fontanesi, S. Braglia, I. Nisi, E. Scotti, L. Buttazzoni, and V. Russo. 2006. Investigation of SNPs in the ATP1A2, CA3 and DECR1 genes mapped to porcine chromosome 4: analysis in groups of pigs divergent for meat production and quality traits. Ital. J. Anim. Sci. 5:249-263. Diel, P. 2002. Tissue-specific estrogenic response and molecular mechanism. Toxicol. Lett. 127:217-224. Drogemuller, C., H. Hamann, and O. Distl. 2001. Candidate gene markers for litter size in different German pig lines. J. Anim. Sci. 79:2565-2570. Dulhunty, A. F., and P. Pouliquin. 2003. What we don't know about the structure of ryanodine receptor calcium release channels. Clin. Exp. Pharmacol. Phisiol. 30:713-723. Edwards, Y. H., S. Tweedie, N. Lowe, and G. Lyons. 1992. Carbonic andhydrase 3 (CA3), a mesodermal marker. Symp. Soc. Exp. Biol. 46:273-283. Enfält, A. C., K. LundstrÖm, A. Karlsson, and I. Hansson. 1997. Estimated frequency of the RN- allele in Swedish Hampshire pigs and comparison of glycolytic potential, carcass composition, and technological meat quality among Swedish Hampshire, Landrace, and Yorkshire pigs. J. Anim. Sci. 75:2924-2635. Estrade, M., X. Vignon, and G. Monin. 1993. Effect of the RN- gene on ultrastructure and protein fractions in pig muscle. Meat Sci. 35:313-319. Feiner, G. 2006. Meat products handbook practical science and technology. Woodhead Publishing Limited. P. 34-35. Fiorentino, F., M. C. Magli, D. Podini, A. P. Ferraretti, A. Nuccitelli, N. Vitale, M. Baladi, and L. Gianaroli. 2003. The minisequencing method: an alternative atrategy for preimplantation genetic diagnosis of single gene disorders. Mol. Hum. Reprod. 9:399-410. Fujii, J., K. Otsu, F. Zorazto, S. DeLeon, V. K. Khanna, J. E. Weiler, P. J. O'Brien, and D.H. MacLennan. 1991. Identification of a mutation in porcine ryanodine receptor associated with malignant hyperthermia. Science 253:448-451. Gao, S.H., and S.M. Zhao. 2009. Physiology, affecting factors and strategies for control of pig meat intramuscular fat. Recent Patents on Food, Nutrition & Agriculture. 1:59-74. Gao, Y., R. Zhang, X. Hu, and N. Li. 2007. Application of genomic technologies to the improvement of meat quality of farm animals. Meat Sci. 77:36-45. Gerbens, F., G. Rettenberger, J.A. Lenstra, J.H. Veerkamp, and M.F. te Pas. 1997. Characterization, chromosomal localization, and genetic variation of the porcine heart fatty acid-binding protein gene. Mamm Genome 8: 328-332. Glatz, F. C., and G. F. van deVusse. 1990. Cellular fatty acid-binding proteins: current concepts and future directions. Mol. Cell. Biochem. 98:237-251. Harbitz, I., B. Chowdhary, P. D. Thomsen, W. Davies, U. Kaufmann, S. Kraan, I. Gustavsson, K. Christensen, and J. G. Hauge. 1990. Assignment of the porcine calcium release channel gene, a candidate for the malignant hyperthermia locus, to the 6p11 → q21 segment of chromosome 6. Genomics 8:243-248. Hedegaard J., P. Horn, R. Lametsch, H. Søndergaard Møller, P. Roepstorff, C. Bendixen, and E. Bendixen. 2004. UDP-Glucose pyrophosphorylase is upregulated in carriers of the porcine RN- mutation in the AMP-activated protein kinase. Proteomics 4:2448-2454. Hertzel, A. V., and D. A. Bernlohr. 2000. The mammalian fatty acid-binding protein multigene family: molecular and genetic insights into function. Trends Endocrinol. Metab. 5:175-180. Horogh, G., A. Zsolnai, I. Komlósi, A. Nyíri, I. Anton, and L. Fésüs. 2005. Oestrogen receptor genotypes and litter size in Hungarian Large White pigs. J. Anim. Breed. Genet. 122:56-61. Hughes, I. P., C. Moran, and F. W. Nicholas. 1992. PCR genotyping of the ryanodine receptor gene for a putative causal mutation for malignant hyperthermia in Australian pig. J. Anim. Breed. Genet. 109:465-476. Hui, Y.H, W.K. Nip, R.W. Rogers, and O.A. Young. 2001. Meat science and application. New York: Marcel Dekker. Isler, B. J., K. M. Irvin, S. M. Neal, S. J. Moeller, and M. E. Davis. 2002. Examination of the relationship between the estrogen receptor gene and reproductive traits in swine. J. Anim. Sci. 80:2334-2339. Kelly, P. A., J. Djiane, M. C. Postel-Vinay, and M. Edery. 1991. The prolactin/growth hormone receptor family. Endrocr. Rev. 12:235-251. Kim, S., A. Misra. 2007. SNP genotyping: technologies and biomedical applications. Annu. Rev. Biomed. Eng. 9:289-320. KlitØ, N. G. F., Q. Tan, M. Nyegarrd, M. Thomassen, C. Skouboe, J. Dahlgaard, and T. A. Kruse. 2007. Arrayed Primer Extension in the “Array of Arrays” Format: A Rational Approach for Microarray-Based SNP Genotyping. Genet. Test. 11:160-166. Kmieć, M., and A. Terman. 2006. Associations between the prolactin receptor gene polymorphism and reproductive traits of boars. J. Appl. Genet. 47:139-141. Kuiper, G. G. J. M., E. Enmark, M. Pelto-Huikko, S. Nilsson, and J. A. Gustafsson. 1996. Cloning of a novel estrogen receptor expressed in rat prostate and ovary. Proc. Natl. Acad. Sci. USA 93:5925-5930. Kurg, A., N. TÕnisson, I. Georgio, J. Shumaker, J. Tollett, and A. Metspalu. 2000. Arrayed primer extension: solid-phage four-color DNA resequencing and mutation detection technology. Genet. Test 4:1-10. Lindblad-Toh, K., E. Winchester, M. J. Dalay, D.G. Wang, J. N. Hirschhorn, J. P. Laviolette, K. Ardie, D. E. Reich, E. Robinson, P. Sklar, N. Shah, D. Thomas, J.B. Fan, T. Gingeras, J. Warrington, N. Patil, T. J. Hudson, and E. S. Lander. 2000. Large-scale discovery and genotyping of single-nucleotide polymorphisms in the mouse. Nat. Genet. 24:381-386. LundstrÖm, K., A. Anderson, and A. Hansson. 1996. Effect of the RN gene on technological and sensory meat quality in crossbred pig with Hampshire as terminal sire. Meat Sci. 42:145-153. Milan, D., N. Woloszyn, M. Yerle, P. Le Roy, M. Bonnet, J. Riquet, Y. Lahbib- Mansais, J. C. Caritez, A. Robic, P. Sellier, J. M. Elsen, and J. Gellin. 1996. Accurate mapping of the "acid meat" RN gene on genetic and physical maps of pig chromosome 15. Mamm. Genome 7:47-51. Milan, D., J. T. Joen, C. Looft, V. Amarger, A. Roboc, M. thelender, C. Rogel-Gillard, S. Paul, N. Iannuccelli, L. Rask, H. Ronne, K. Lundstrom, N. Reinsch, J. Gellin, E. Kalm, P. Le Roy, P. Chardon, and L. Andersson. 2000. A mutation in PRKAG3 associated with excess glycogen content in pig skeletal muscle. Science 288:1248-1251. Moeller, S. J., T. J. Baas, T. D. Leeds, R. S. Emnett, and K. M. Irvin. 2003. Rendement Napole gene effects and a comparison of glycolytic potential and DNA genotyping for classification of Rendement Napole status in Hampshire-sired pigs. J. Anim. Sci. 81:402-410. Monin, G., and P. Sellier. 1985. Pork of low technological quality with a normal rate of muscle pH fall in the immediate postmortem period: The case of the Hampshire breed. Meat Sci. 13:49-63. Murayama, T., T. Oba, H. Hara, K. Wakebe, N. Ikemoto, and Y. Ogawa. 2007. Postulated role of interdomain interaction between regions 1 and 2 within type 1 ryanodine receptor in the pathogenesis of porcine malignant hyperthermia. Biochem. J. 402:349-357. Pang, W. J., L. Bai, and G. S. Yang. 2006. Relationship among H-FABP gene polymorphism, intramuscular fat content, and adipocyte lipid droplet content in main pig breeds with different genotypes in western China. Acta Genetica Sinica. 33: 515-524. Polekhina G, A. Gupta, B. J. van Denderen, S. C. Feil, B. E. Kemp, D. Stapleton, and M. W. Parker. 2005. Structural basis for glycogen recognition by AMP-activated protein kinase. Structure 13:1453-1462. Pullan, L. M., and E. A. Noltmann. 1985. Purification and properties of pig muscle carbonic anhydrase III. Biochem. Biophys. Acta. 839:147-154. Richards, J. S., A. R. Jr. Midgley. 1976. Protein hormone action: a key to understanding ovarian follicular and luteal cell development. Biol. Reprod. 14:82-94. Rothschild, M., C. Jacobson, D. Vaske, C. Tuggle, L. Wang, T. Short, G. Eckardt, S. Sasaki, A. Vincent, D. McLaren, O. Southwood, H. van der Steen, A. ileham, and G. Plastow. 1996. The estrogen receptor locus is associated with a major gene influencing litter size in pigs. Proc. Natl. Acad. Sci. USA 93:201-205. Schaap, F. G., G. J. van der Vusse, and J. F. Glatz. 1998. Fatty-acid-binding proteins in the heart. Mol. Cell Biochem. 180:43-51. Schomberg, D. W., J. F. Couse, A. Mukherjee, D. B. Lubahn, M. Sar, K. E. Mayo, and K. S. Korach. 1999. Targeted disruption of the estrogen receptor-alpha gene in female mice: characterization of ovarian responses and phenotype in the adult. Endocrinology 140:2733-2734. Scully, K. M., A. S. Gleiberman, J. Lindzey, D. B. Lubahn, K. S. Korach, and M. G. Rosenfeld. 1997. Role of estrogen receptor α in the anterior pituitary gland. Mol. Endocrinol. 11:674-681. Short, T. H., M. F. Rothschild, O. I. Southwood, D. G. McLaren, A. de Vries, H. van der Steen, G. R. Eckardt, C. K. Tuggel, J. Helm, D. A. Vaske, A. J. Mileham and G. S. Plastow. 1997. Effect of the estrogen receptor locus on reproduction and production traits in four commercial pig lines. J. Anim. Sci. 75:3138-3142. Sobrino, B., M. BriÓn, and A. Carracedo. 2005. SNPs in forensic genetics: a review on SNP typing methodologies. Forensic. Sci. Int. 154:181-194. Syvänen, A. C. 2001. Accessing genetic variation: genotyping single nucleotide polymorphisms. Nat. Rev. Genet. 2:930-942. Turner, D., F. Choudhury, M. Reynard, D. Railton, and C. Navarrete. 2002. Typing of multiple single nucleotide polymorphism in cytokine and receptor genes using SnaPshot. Hum. Immunol. 63:508-513. Van Rens, B. T. T. M., and T. Van der Lende. 2000. Effect of prolactin receptor (PRLR) gene polymorphism on litter size and placental traits in gilts. J. Reprod. Fertil. Abstr. Ser. 26:12. Veerkamp, A. J., and R. G. H. J. Maatman. 1995. Cytoplasmic fatty acid-binding proteins: their structure and genes. Prog. Lipid Res. 34:157-168. Vignal, A., D. Milan, M. Sancristobal, and A. Eggen. 2002. A review on SNP and other types of molecular markers and their use in animal genetics. Genet. Sel. Evol. 34:275-305. Vincent, A. L., L. Wang, C. K. Tuggle, A. Robic, and M. F. Rothschild. 1997. Prolactin receptor maps to pig chromosome 16. Mamm. Genome 8:793-794. Vincent, A. L., G. Evans, T. H. Short, O. I. Southwood, G. S. Plaslow, and C. K. Tuggle. 1998. The prolactin receptor gene assicoated with increased litter size in pigs. In: Proc.6th World Cong. Genet. Appl. Livest. Prod., Armidale, Australia. pp.15-18. Wang, H. L., Z. M. Zhu, H. Wang, S. L. Yang, S. H. Zhao, and K. Li. 2006. Molecular characterization and association analysis of porcine CA3. Cytogenet. Genome Res. 115:129-133. Wappler, P. 2001. Malignant hyperthermia. Eur. J. Anaesth. 18:632-652. Wimmers, K., E. Murani, M. F. W. Te Pas, K. C. Chang, R. Davoli, J. W. M. Merks, H. Henne, M. Muraniova, N. da Costa, B. Harlizius, K. Schellander, I. Böll, S. Braglia, A. A. C. de Wit, M. Cagnazzo, . Fontanesi, D. Prins, and S. Ponsuksili. 2007. Associations of functional candidate genes derived from gene-expression profiles of prenatal porcine muscle tissue with meat quality and muscle deposition. Anim. Genet. 38:474-484. Wu, J., D. Zhou, C. Deng, Y. Xiong, M. Lei, F. Li, S. Jiang, B. Zuo, and R. Zheng. 2008. Expression pattern and polymorphism of three microsatellite markers in the porcine CA3 gene. Genet. Sel. Evol. 40:227-239. Wu, M.C., Y.C. Huang, and H.L. Chang. 2005. Genomic pig breeding for growth and meat quality. (online) Avilable HTTP: Wu, Z. F., D. W. Liu, Q. L. Wang, H. Y. Zeng, and Y. S. Chen. 2006. Study on the association between estrogen receptor gene (ESR) and reproduction trait in Landrace pigs. Acta Genetica Sinica 33:711-716. Zhang, R., E. Buczko, C. H. Tsai-Morris, Z. Z. Hu, and M. L. Dufau. 1990. Isolation and characterization of two novel rat ovarian lactogen receptor cDNA species. Biochem. Biophys. Res. Commun. 168:415-422. Zhang, W., D. L. Kuhlers, and W. E. Rempel. 1992. Halothane gene and swine performance. J. Anim. Sci. 70:1307-1313.
本試驗之目的為利用微序列分析、PCR-RFLP 進行泰國與台灣豬隻心臟型脂肪酸結合蛋白(heart fatty acid binding protein, H-FABP)、酸肉(rendement napole, RN)、鈣離子釋放通道接受體(calcium release channel, CRC)、碳酸酐酶3(carbonic anhydrase, CA3)、動情素接受體(estrogen receptor, ESR)與泌乳素受體(prolactin receptor, PRLR)基因型比較。H-FABP基因是肌間脂肪含量的候選基因,試驗結果發現基因型HH-6之豬隻以台灣杜洛克(0.646)、HL-5型者以泰國比利華(0.200)、HL-4型者以台灣藍瑞斯(0.694)、HL-3型者以泰國2x dam line(0.650)、HL-2型者以泰國大白豬(0.400)、HL-1型者以泰國黑豬(0.380)及LL-0型者以台灣黑豬(0.161)所出現的頻率最高。RN基因為酸肉的候選基因,基因型為rn+/rn+之豬隻其肉質是正常的。本試驗結果顯示除了泰國藍瑞斯(0.950)、台灣杜洛克(0.994)、台灣黑豬之(0.935)非rn+/rn+型者外,其他所有豬種皆為rn+/rn+型(即基因型頻率為1.000)。CRC基因為水樣肉及緊迫症狀的候選基因,AA基因型為正常者。供試之豬隻中,泰國與台灣的大白豬、藍瑞斯、杜洛克皆全為AA型(1.000),而泰國2x sire line則以AB型出現的頻率較高(0.579)。B交替基因僅微可見於泰國比利華、泰國2x dam line及泰國與台灣黑豬中。CA3基因(C/T變異)是瘦肉及肌內脂肪相關候選基因,試驗結果顯示CC型者以泰國比利華(0.900)、CT型者以泰國藍瑞斯(0.650)、TT型者以泰國大白豬(0.800)出現頻率最高。CA3基因之A/G變異為腿肉量相關的候選基因,試驗結果顯示所有豬種皆為AA型(1.000)。ESR基因為繁殖表現的相關候選基因。AA型者以在台灣杜洛克(1.000)、AB型者以泰國2x dam line(0.480)、BB型者以泰國大白豬(0.650)所出現的頻率最高。PRLR基因亦為繁殖表現的相關候選基因之一。AA型者以台灣黑豬(0.624)、AB型者以泰國大白豬(0.800)、BB型者以泰國比利華豬(1.00)所出現的頻率最高。本試驗之基因檢測結果可提供豬遺傳改良之參考

The aim of this study was to comparisons of H-FABP, RN, CRC, CA3, ESR, and PRLR genotypes in Thai and Taiwan pigs using minisequencing and PCR-RFLP. The H-FABP gene is a candidate gene for intramuscular fat (IMF) content. The highest frequencies of HH-6 (0.646) in Taiwan Duroc, HL-5 (0.200) in Thai Pietrain, HL-4 (0.694) in Taiwan Landrace, HL-3 (0.650) in Thai 2x dam line, HL-2 (0.400) in Thai Large White, HL-1 frequency (0.380) in Thai Black pig, and LL-0 (0.161) in Taiwan Black pig were found. The RN gene is a candidate gene for acid meat. The phonotype of rn+/rn+ is normal. All genotypes of RN gene in tested animals were rn+/rn+ (1.000) other than Thai Landrace (0.950), Taiwan Duroc (0.994) and Taiwan Black pig (0.935). The CRC gene is candidate gene for PSE and PSS, all AA type (normal) (1.000) was observed in Large White, Landrace and Duroc pigs in both of Thai and Taiwan. The highest frequency of AB type (0.579) was found in 2x sire line of Thai pigs. There was still minor B allele in Pietrain, 2x dam line (Thai) and Black pigs (both of Thai and Taiwan). The CA3 (C/T) gene is a candidate gene for lean cuts (LC) and visible intermuscular fat (VIF). The highest frequencies of CC (0.900) in Thai Pietrain, CT (0.650) in Thai Landrace and TT (0.800) in Thai Large white were found. The CA3 (A/G) is a candidate gene for percentage of ham. All tested animals genotypes are AA (1.000). The ESR is a candidate gene for reproduction. The highest frquencies of AA (1.000) found in Taiwan Duroc, AB (0.480) in 2x dam line, and BB (0.650) in Thai Large White. The PRLR gene also is a candidate gene for reproduction. The highest frequencies of AA (0.624) in Taiwan Black pig, AB (0.800) in Thai Large White and BB (1.000) in Thai Pietrain were found. These results might provide the information for genetic improvement in pig breeding.
其他識別: U0005-1407200911480800
Appears in Collections:動物科學系

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.