Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/2519
標題: 鋯鈦酸鉛薄膜製程參數對機電性質之影響
The effects of thin-film PZT fabrication parameters on the film's mechanical and electrical properties.
作者: 莊峻佑
You, Chuang-Chun
關鍵字: PZT thin film;PZT薄膜;sol-gel process;non-annealingPt substrate;溶膠凝膠製程;未退火白金基板
出版社: 機械工程學系所
引用: 1.W. A. Moussa, H. Ahmed, W. Badawy, M. Moussa, “Investtigating the Reliability of Electrostatic Comb-drive Actuator Utilized in Microfluidic and Space systems Using Finite Element,” Can. J. Electr. Comput. Eng.27, 195–200,2002. 2.P. Sekalski, "Thermo-Electric Actuator,” Dpartment CTRONICS and COMPUTER SCIENCE, Lodz, February 2003. 3.J. D. Hwang, Y. K. Kwak, H. J. Jung, S. H. Kim, J. H. Ahn, “Minimization of Modeling Error of the Linear Motion System with Voice Coil Actuator,” International Journal of Control, Automation, and Systems, vol. 6, no. 1, pp. 54-61, February 2008. 4.J. Ok, M. Chu, C. J. Kim, ”Pneumatically driven microcage for micro - objects in biological liquid” in IEEE Micro Electro Mechanical Systems Workshop, Orlando, Florida, USA: IEEE, 459,1999. 5.W. Wischnewskiy, S. Kovalev, O. Vyshnevskyy, “New Ultrasonic Piezoelectric Actuator for Nanopositioning,” ACTUATOR, 2004. 6.M. D. Losego, J. F. Ihlefeld, J. P. Maria, “Importance Of Solution Chemistry In Preparing Sol–Gel PZT Thin Films Directly On Copper Surfaces,” Chemistry of Materials, v 20, n 1, p 303-307, January 8, 2008. 7.C. L. Dai, F. Y. Xiao, C. Y. Lee, Y. C. Chengc, P. Z. Changd, S. H. Changc, “Thermal effects in PZT_ diffusion of titanium and recrystallization of platinum,” Materials Science and Engineering A, v 384, n 1-2, p 57-63, October 25, 2004. 8.S. Thountom, M. Naksata,T. Tunkasiri, P. Thavornyutikarn, “Phase evolution and electrical properties of lead zirconate titanate thin films grown by using a triol sol-gel route,” Ceramics International, v 35, n 1, p 147-149, January 2009. 9.J. Lu,Y. Zhang, T. Ikehara,T. Mihara, R. Maeda, “Effects of Rapid Thermal Annealing on Nucleation, Growth, and Properties of Lead Zirconate Titanate Films,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, v 54, n 12, p2548-2554, December 2007. 10.I. Y. Shen, G. Z. Cao, C. C. Wu, C. C. Lee, “PZT Thin-Film Meso- and Micro Devices,” Ferroelectric, 342: p15-34, 2006. 11.量測發展中心,「電陶瓷線性馬達應用研討會」,財團法人工業技術研究院,1999。 12.陳志清,「壓電薄膜表面聲波元件之製作」,國立台灣大學機械工程研究所,碩士論文,1997。 13.Y. S. Jeong, H. U. Lee, S. A. Lee, J. P. Kim, H. G. Kim, S. Y Jeong, C. R. Cho, ”Annealing effect of platinum-based electrodes on physical properties of PZT thin films,” Current Applied Physics, v 9, n 1, p 115-119, January 2009. 14.曾泓傑,「鋯鈦酸鉛薄膜沈積在不同基板上之研究」,國立中興大學機械工程研究所,碩士論文,2008。 15.祝裕,熱力(工)學(含熱傳學),千華數位文化股份有限公司,p465-p471,台北,2008。 16.吳瀧川,陳慶鐘,熱傳遞,高立圖書有限公司,p127-p139,台北,1991。 17.蔡發達,「氧化銦錫薄膜之機械性質與磨耗特色研究」,聖約翰科技大學自動化和機電整合研究所,碩士論文,2008。 18.「實用的溫度量測指南」, Agilent Technologies。 19.R. P. Vinci, J. J. Vlassak, “Mechanical behavior of thin films,” Annu. Rev.Mater. Sci. 26, 431-62, 1996. 20.R. J. Ong, D. A. Payne, N. R. Sottos, ”Processing Effects for Integrated PZT: Residual Stress, Thickness, and Dielectric Properties,” Journal of the American Ceramic Society, v 88, n 10, p 2839-2847, October 2005. 21.R. J. Ong, D. A. Payne, N.R. Sottos, “Residual stress effects on piezoelectric response of sol-gel derived lead zirconate titanate thin films,” Journal of Applied Physics, v 101, n 2, 2007. 22.S. Timoshenko, J. N. Goodier, “Theory of Elasticity,” McGraw-Hill, New Youk, 1951. 23.李泳達,邱俊偉,奈米壓痕法研究光學薄膜之奈米性質與物理現象,南台科技大學機械研究所,行政院國家科學委員會專題研究計畫成果報告,2002。 24.陳泰盛,「反應式共濺鍍鉭-矽-氮(Ta-Si-N)奈米複合薄膜之微結構與機械性質研究」,成功大學機械工程研究所,碩士論文,2006。
摘要: 
本論文用溶膠凝膠製程來沉積PZT薄膜,並利用不同的參數來提升PZT薄膜的良率。薄膜破裂面積之良率是利用光學顯微鏡(OM)與圖像分析軟體(ImageJ)來量測。電學性質量測則是用電滯曲線儀和LCR儀器。機械性質之量測是使用晶片彎曲法、奈米刮痕法以及奈米壓痕法。
首先,這裡有四個參數對於提升薄膜良率很重要。第一個參數為基板之表面能,提高基板之表面能可以減少水接觸角的角度,以增加壓電薄膜和基板之間的附著力。實驗中利用大氣電漿來控制基板接觸角之大小。實驗結果顯示基板之接觸角應小於 30 °,可得破裂面積之良率小於2%之壓電薄膜。
第二個參數為焦化製程之影響。我們再燒結前用較低的溫度以去除薄膜中的有機溶劑。如果有機溶劑揮發太快,則薄膜揮發會因快速收縮而導致破裂。我們所使用的PZT溶膠中的有機溶劑分別有水,醋酸,乳酸,乙二醇,甘油,而各溶劑之揮發溫度分別是100℃,118℃,122℃,171℃,290℃。由於文獻裡通常用單一溫度去將有機溶劑移除,但這將使有機溶劑揮發速度增加。因此,本文將一階段焦化步驟修改為三階段焦化步驟。前兩階段溫度設定為 110℃和130℃,分別先移除水,醋酸與乳酸。第三階段溫度:則利用實驗求得薄膜破裂較少之焦化溫度。實驗結果顯示,第三步的焦化溫度應小於 350℃,可得破裂面積之良率小於2%之壓電薄膜。另一個因素是焦化製程中的穩態時間,本文利用有限元分析去設計緩衝層的穩態時間。實驗結果發現,緩衝層的穩定時間應大於 50秒,可得破裂面積較少的壓電薄膜。
第三個參數為燒結溫度之影響。本文利用快速燒結法(RTA)來燒結薄膜,其燒結溫度分別為 550℃,600℃,650℃,700℃和750℃。實驗結果發現,當燒結溫度高於 650℃,會使PZT薄膜產生小破孔。可能是因為薄膜中的鉛揮發,或者是白金產生聚集現象導致。以LCR儀器量測不同燒結溫度的電容和介電常數時,當燒結溫度為650℃時,薄膜會有較大的電容和介電常數,其實驗結果分別為57.2nF和309.2。再利用電滯曲線儀量測PZT薄膜的表面電荷量並可計算殘留極化值。實驗結果顯示,當燒結溫度為 650℃時,PZT薄膜具有較大的殘餘極化量和矯頑電場,其值分別為7.78μc/cm2和97kV/cm。在晶圓曲率的量測,實驗所得之薄膜殘留應力結果為104.94MPa。在奈米刮痕量測,實驗所得薄膜貼附力結果為292GPa。在奈米壓痕量測,實驗結果所得PZT薄膜的平均硬度和平均楊氏模數分別為4.29GPa和90.13GPa。

In this thesis, we used different parameters to improve quality of PZT thin film which is fabricated by sol-gel process. The quality of PZT thin film was characterized by crack areas, electrical properties and mechanical properties. The crack area was determined by optical microscope (OM) and image analysis software (ImageJ). The electrical properties was measured by PE loop and LCR meter. The mechanical properties was measured by wafer curvature, nanoscratch, and nanoindentation.
There are four important parameters to improve film's quality. The first one is the surface energy of substrate. To raise the surface energy by reducing contact angle of substrate can increase adhesion force between PZT film and substrate. In the experiments, the contact angel can be controlled by O2 plasma treatments. Experimental results show that contact angel of substrate should be less than 30° to get porousless PZT thin film with crack area less than 2%.
The second parameter is pyrolysis process. Before sintering, we used lower temperature to remove organic solvent from film. If organic solvent evaporates too fast, the film will shrink to create cracks. Organic solvents for PZT solution we used are DI-water, acetate acid, lactic acid, ethylene glycol, and glycerol of that boiling temperature are 100℃, 118℃, 122℃, 171℃, 290℃, respectively. Therefore, the one-step pyrolysis process was modified to three-step process. In literature, organic solvents were removed by single temperature. That will produce large evaporation rate of solvents. The temperature of first two steps were set at 110℃ and 130℃ to remove DI-water, acetate acid, lactic acid. Temperature in third step was determined experimentally to reduce cracks of film . Experimental results show that the third step of pyrolysis temperature should be less than 350℃to get porousless PZT thin film with crack area less than 2%. The other factor is the settling time of pyrolysis process. In the experiments, the steady-state time of buffer layer was designed by finite element analysis. Experimental results show that steady state time should be longer than 50 second to get porousless PZT thin film.
The third parameter is sintering temperature. The PZT thin films were sintered by rapid thermal annealing (RTA) at temperature of 550℃, 600℃, 650℃, 700℃, and 750℃. Experimental results show that sintering temperature was higher than 650℃, the PZT thin film will generate holes. This might results from evaporation of lead in PZT, aggregation of Pt layer. In the LCR measurement, we measured the capacitance and dielectric constant of sample treated by different sintering temperatures. Experimental results show that the PZT thin film had larger capacitance and dielectric constant, 57.2nF and 309.2, respectively, when the sintering temperature was 650℃. In the P-E hysteresis measurement, we measured the surface charge of PZT thin film and calculated the remnant polarization. Experimental results show that the PZT thin film had larger remnant polarization and coercive field, 7.78μc/cm2 and 97kV/cm, respectively, when the sintering temperature was 650℃. In the wafer curvature measurement, experimental results show that the residual stress of PZT thin film is 104.94MPa. In the nanoscratch measurement, experimental results show that the adhesion force of PZT thin film is 292GPa. In the nanoindentation measurement, experimental results show that the PZT thin film of average hardness and Young's modulus are 4.29GPa and 90.13GPa, respectively.
URI: http://hdl.handle.net/11455/2519
其他識別: U0005-2308201017052000
Appears in Collections:機械工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.