Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/25201
標題: 絲羽烏骨雞外貌特徵之遺傳研究
The genetic research for phenotypic characteristics of silky fowl
作者: 鄭佩儀
Cheng, Pei-Yi
關鍵字: silky fowl;絲羽烏骨雞;phenotype;外貌性狀
出版社: 動物科學系所
引用: 何玉珍。1999。遺傳、胡麻粕與α-MSH對烏骨雞外表皮膚黑度之影響。碩士論文。國立中興大學。台中。 呂理淵。2000。台灣土雞、北京油雞、商用烏骨雞與絲羽烏骨雞之生長、外貌、血液與免疫性狀之調查研究。碩士論文。國立中興大學。台中市。 李宗鴻。1988。土雞與白色來航雞及其正反雜交雞產蛋性能與蛋品質之研究。碩士論文。國立中興大學。台中。 李時珍。1578。本草綱目(六)。卷四十八。禽部。73-74頁。商務書局。香港。 李淵百。1992。台灣的土雞。國立中興大學畜牧學系。 李華與邱祥聘。2003。烏骨雞的遺傳多樣性研究現狀。中國畜牧雜誌 36 (6):51-53。 吳紅靜、田穎剛、謝明勇、王維亞和唐永富。2007。烏骨雞正己烷提取物組成及其抗皮膚衰老活性研究。天然產物研究與開發 19:225-228。 邱禮平與姚玉靜。2005。泰和烏雞在食品和藥品中應用進展。中國家禽 27 (23):54-56。 高振宏。2006。知識天地-淺談有關基因定位的統計方法。中研院電子報第56期。 陳志峰譯。2006。雞隻外貌的遺傳多樣性。國立編譯館與藝軒圖書出版社。台北。 陳亭蓉。1998。北京油雞、絲羽烏骨雞、台灣地區商用烏骨雞與土雞育成期生長與行為性狀之比較。碩士論文。國立中興大學。台中。 徐桂芳與陳寬維。2004。中國家禽地方品種資源圖譜。中國農業出版社。北京。 徐楓雯。2007。利用烏骨雞雞爪萃取含黑色素之膠原蛋白與其功能性探討。碩士論文。國立中興大學。台中。 程光潮、劉坤凡、張琦、王力、段章雄、李曉豔、劉如笋、俞清。1996。紅原雞與家雞的親緣關係研究。遺傳學報 23 (2):96-104。 深尾正俊。廖梅珠譯。1997。神祕的烏骨雞。台北。三華圖書印刷有限公司。 張仲葛與黃維一。1953。祖國的畜牧與畜產資源。上海。上海永祥印書館。 湯青萍、陳寬維、李慧芳、章雙杰與趙東偉。2005。應用微衛星標記對12個中國地方烏骨雞品種遺傳多樣性的研究。畜牧獸醫學報。36 (8): 755-760。 劉曉龍。2008。小型白與黑羽烏骨雞之保存及展望。行政院農委會畜產試驗所五十週年所慶學術研討會專輯。15-1至15-6頁。 趙豔平、黃小紅、李建喜和武帥。2008。烏骨雞黑色素的研究進展。廣東畜牧獸醫科技 33 (1):12-15。 鄭丕留。1988。絲羽烏骨雞。中國家禽品種志。73-78頁。上海科學技術出版社。 戴卓見。1992。烏骨雞生產及其疾病防治新技術。中國畜牧雜誌。24 (9):14-26 蔡華珍與吳勇。2006。烏雞黑色素抗紫外線功能的應用研究。食品與發酵工業。32 (11):47-49。 蕭爾欣。2006。烏骨雞黑色素抗氧化及保護皮膚纖維母細胞抗光老化之有效評估。碩士論文。國立中興大學。台中。 Brenner, M. and V. J. Hearing. 2008. The protective role of melanin against UV damage in human skin. Photochem. Photobiol. 84: 539-549. Brisbin, I. L. and A. T. Peterson. 2007. Playing chicken with red junglefowl: identifying phenotypic markers of genetic purity in Gallus gallus. Anim. Conserv. 10: 429-435. Brisbin, I. L., A. T. Peterson, R. Okimoto, and G. Amato. 2002. Characterization of the genetic status of populations of Red Junglefowl. J. Bombay Nat. Hist. Soc. 99: 217-223. Buckland, R. B. and R. O. Hawes. 1968. Comb type and reproduction in the male fowl: semen characteristics and testes structure. Poult. Sci. 47 (2): 704-710. Crawford, R. D. and J. R. Smyth. 1964. Studies of the relationship between fertility and the gene for rose comb in the domestic fowl. 1. The relationship between comb genotype and fertility. Poult. Sci. 43 (2): 1009-1017. Crawford, R. D. 1990. Origin and history of poultry species. Page 1-41 in Poultry breeding and genetics. R. D. Crawford, ed. Amsterdam: Elsevier. Crawford, R. D. 1990. Poultry genetic resources: Evolution, diversity, and conservation. Page 43- 60 in Poultry breeding and genetics. R. D. Crawford, ed. Amsterdam: Elsevier. Darwin, C. 1868. The variation of animals and plants under domestication. John Murray, London. Delacour, J. 1951. The pheasants of the world. London: Country Life Ltd. Eriksson, J., G. Larson, U. Gunnarsson, B. Bed’hom, M. Tixier-Boichard, L. Strömstedt, D. Wright, A. Jungerius, A. Vereijken, E. Randi, P. Jensen, and L. Andersson. 2008. Identification of the Yellow Skin gene reveals a hybrid origin of the domestic chicken. PLos Genet. 4(2): e1000010 Faraco, C. D., S. A. S. Vaz, M, V. D. Pástor, and C. A. Erickson. 2001. Hyperpigmentation in the silkie fowl correlates with abnormal migration of fate-restricted melanoblasts and loss of environmental barrier molecules. Dev. Dyn. 220: 212-225. Goldstein, D. B., A. R. Linares, L. L. Cavalli-Sforza, and M. W. Feldman. 1995. An evaluation of genetic distances for use with microsatellite loci. Genet. 139: 463-471. Griffiths, A. J. F., J. F. Miller, D. T. Suzuki, R. C. Lewontin, and W. M. Gelbart. 1996. Introduction to genetic analysis, 5th Ed. W.H. Freeman, New York. Gould, J. and W. Keeton. 1996. Biological science, 6th Ed. W.W. Norton and Co. New York. Hallet, M. M. and R. Ferrand. 1984. Quail melanoblast migration in two breeds of fowl and in their hybrids: evidence for a dominant genie control of the mesodermal pigment cell pattern through the tissue environment. J. Exp. Zool. 230: 229-238. Huang, Y. Q., X. M. Deng, Z. Q. Du, X. Qiu, X. Du, W. Chen, M. Morisson, S. Leroux, F. Abel Ponce de Léon, Y. Da and N. Li. 2006. Single nucleotide polymorphism in the chicken Lmbr1 gene are associated with chicken polydactyly. Gene. 374: 10-18. Hutt, F. B. 1940. A relation between breed characteristics and poor reproduction in White Wyandotte fowls. Am. Nat. 74: 148-156. Hutt, F. B. 1949. Genetics of the fowl. International chicken polymorphism map consortium. 2004. A genetic variation map for chicken with 2.8 million single-nucleotide polymorphisms. Nature. 432: 717-722. Jull, M. A. 1930. The association of comb and cost characters in the domestic fowl. J. Hered. 21: 21-28. Kimball, E. 1958. Eclipse plumage in Gallus. Poult. Sci. 37: 733-734. Levitt, R. C., M. B. Kiser, C. Dragwa, A. E. Jedlicka, J. Xu, D. A. Meyers, and J. R. Hudson. 1994. Fluorescence-based resource for semiautomated genomic analyses using microsatellite markers. Genomics 24: 361-365. Mclean, D. J. and D. P. Froman. 1996. Identification of sperm cell attribute responsible for subfertility of Roosters homozygous for the rose comb allele. Biol. Reprod. 54: 168-172. Mérat, P. 1962. Existence d’un gène influant la taille des barbillons chez la poule. Ann. Zootech. 11:157-158. Morgan, T. H. 1916. A critique of the theory of evolution. Princeton NJ: Princeton University Press. Morejohn, G. V. 1968. Study of plumages of the four species of the genus Gallus. Condor 70: 56-65. Morejohn, G. V. 1974. Ancestral origins of the domestic fowl. Genetics Lectures 3 : 117-131. Muroya, S., R. I. Tanabe, I. Nakajima, and K. Chikuni. 2000. Molecular Characteristics and site specific distribution of the pigment of the Silky fowl. J. Vet. Med. Sci. 62 (4): 391-395. Nishimura, S., I. Oshima, Y. Ono, S. Tabata, A. Ishibashi, and H. Iwamoto. 2006. Age-related changes in the intramuscular distribution of melanocytes in silky fowl. Brist. Poult. Sci. 47 (4): 426-432. Peterson, A. T. and I. L. Jr. Brisbin. 1998. Genetic endangerment of wild red junglefowl gallus gallus? Bird Conserv. Int. 8: 387-394. Reed, P. W., J. L. Davies, J. B. Copeman, S. T. Bennett, S. M. Palmer, L. E. Pritchard, S. C. Gough, Y. Kawaguchi, H. J. Cordell, and K. M. Balfour. 1994. Chromosome-specific microsatellite sets for fluorescence-based, semi- automated genome mapping. Nat. Genet. 7: 390-395. Pitel, F., R. Bergé, G. Coquerelle, R. P. M. A. Crooijmans, M. A. M. Groenen, A. Vignal, and M. Tixier-Boichard. 2000. Mapping the nack neck (NA) and polydactyly (PO) mutants of the chicken with microsatellite molecular markers. Genet. Sel. Evol. 32 : 73-86. Punnet, R. C. 1923. Heredity in poultry. Mac Millan, London. Romanov, M. N. and S. Weigend. 2001. Analysis of genetic relationships between various populations of domestic and jungle fowl using microsatellite markers. Poult. Sci. 80: 1057-1063. Shoffner, R. N., J. S. Otis, and V. A. Garwood. 1993. Association of dominant marker traits and metri traits in chickens. Poult. Sci. 72: 1405-1410. Smyth, J. R. 1990. Genetics of plumage, skin and eye pigmentation in chickens. Page 109-168 in Poultry breeding and genetics. R. D. Crawford, ed. Amsterdam: Elsevier. Somes, R. G. 1990a. Mutations and major variants of plumage and skin in chickens. Page 169-208 in Poultry breeding and genetics. R. D. Crawford, ed. Amsterdam: Elsevier. Somes, R. G. 1990b. Mutations and major variants of muscles and skeleton in chickens. Page 209-238 in Poultry breeding and genetics. R. D. Crawford, ed. Amsterdam: Elsevier. Somes, R. G. 1992. Identifying the ptilopody (feathered shank) loci of the chicken. J. Hered. 83(3): 230-234. Stolle, I. 1968. Vergleichende untersuchungen uber die pigmentierung des seidenhuhns, des italienerhuhns und ihrer bastarde. Wilhelm Roux’ Archiv. 161: 30-48. Tian, Y. G., M. Y. Xie, W. Y. Wang, H. J. Wu, Z. H. Fu, and L. Lin. 2007. Determination of carnosine in Black-Bone Silky Fowl ( Gallus gallus domesticus Brisson ) and common chicken by HPLC. Eur. Food Res. Technol. 226: 311-314. Toyosaki, T and M. Koketsu. 2004. Oxidative stability of silky fowl eggs. Comparison with hen eggs. J. Agric. Food Chem. 52(5): 1328-1330. Turnpenny, P. and S. Ellard. 2005. Emery''s elements of medical genetics, 12th. ed. Elsevier, London. Vanhala, T., M. Tuiskula-Haavisto, K. Elo, J. Vilkki, and A. Mäki-Tanila. 1998. Evaluation of genetic variability and genetic distances between eight chicken lines using microsatellite markers. Poult. Sci. 77: 783-790. Warren, D. C. 1928. Inheritance of earlobe color in poultry. Genet.. 13 : 470-487. Wimmers, K., S. Ponsuksili, T. Hardge, A. Valle-Zarate, P. K. Mathur, and P. Horst. 2000. Genetic distinctness of African, Asian and South American local chickens. Anim. Genet. 31: 159-165. Wulfften Palthe, A. W. van. 1992. C. S. Th. Van Gink’s poultry paintings. WPSA. Beekbergen. Netherlands. Zhou, H., N. Deeb, C. M. Evock-Clover, C. M. Ashwell, and S. J. Lamont. 2006a. Genome-wide linkage analysis to identify chromosomal regions affecting phenotypic trait in the chicken. I. Growth and average daily gain. Poult. Sci. 85: 1700-1711. Zhou, H., N. Deeb, C. M. Evock-Clover, C. M. Ashwell, and S. J. Lamont. 2006b. Genome-wide linkage analysis to identify chromosomal regions affecting phenotypic trait in the chicken. II. Body composition. Poult. Sci. 85: 1712-1721. Zhou, H., N. Deeb, C. M. Evock-Clover, C. M. Ashwell, and S. J. Lamont. 2007a. Genome-wide linkage analysis to identify chromosomal regions affecting phenotypic trait in the chicken. III. Skeletal integrity. Poult. Sci. 86: 255-266. Zhou, H., N. Deeb, C. M. Evock-Clover, C. M. Ashwell, and S. J. Lamont. 2007b. Genome-wide linkage analysis to identify chromosomal regions affecting phenotypic trait in the chicken. IV. Metabolic traits. Poult. Sci. 86: 267-276. Ziegle, J. S., Y. Su, K. P. Corcoran, L. Nie, P. E. Mayrand, L. B. Hoff, L. J. McBride, M. N. Kronick, and S. R. Diehl. 1992. Application of automated DNA sizing technology for genotyping microsatellite loci. Genomics 14: 1026-1031. 泰和烏雞申報國家原產地域產品保護的陳述報告(2006年7月13日)。江西省質量技術監督局。地理標誌產品(江西)。2008年2月20日取自http://www.jxzj.gov.cn/info/content.asp?id=9614 鍾秀枝、張秀鑾、吳明哲、黃祥吉與林德育。1999。絲羽烏骨雞外表特徵之遺傳模式:I.羽色、爪型與腳脛毛。2009年2月20日取自http://www.angrin.tlri.gov.tw/csas/csas_1999_28_4_126.htm Hunter L, a, b Versus CIE 1976 L*a*b*. 2008. Hunter Associates Lab. Application note. Vol. 12 No. 2. Retrieved August 17, 2009, from http://www.hunterlab.com/appnotes/an02_01.pdf
摘要: 
現代家雞具有豐富化的外貌以及良好的生產性能,因此雞隻被視為是遺傳研究良好的材料。絲羽烏骨雞(silky fowl, SF)是源自中國的雞種,因其具有絨毛般的羽毛而得名。除絲羽外,尚有冠毛、核桃冠、藍耳、五爪、鬍鬚、腳脛毛、烏皮、烏肉、烏骨等特徵。本試驗是在利用國立中興大學育成土雞 L2品系與畜產試驗所之白色絲羽烏骨雞雜交,進行三個世代的配種計畫,目的將探討白色絲羽烏骨雞「十全」性狀之遺傳模式。親代使用一隻白色絲羽烏骨雞公雞與四隻 L2 品系母雞雜交,結果產生86隻子一代,再以子一代4隻公雞與24隻母雞進行半同胞雜交,得到 472 隻子二代。外貌觀測結果發現子一代的羽色及羽毛型態與L2 相同,而超過95%的雞隻具有烏皮、烏骨、烏肉、藍耳、五爪與冠毛等特徵,32.6%的個體出現腳脛外側及外側爪有毛的性狀,玫瑰冠與單冠的比例為45.8%及54.2%。子二代則出現了性狀分離的結果,利用chi-square 檢定外貌性狀的遺傳模式,結果指出纖維黑色素及冠毛性狀為體染色體上的不完全顯性基因所控制;五爪及玫瑰冠性狀為體染色體上完全顯性的基因所控制;絲羽及白羽性狀則是受到隱性基因的影響,在子二代時才有表現;腳脛羽毛則不屬於單基因遺傳的性狀。測量雞隻25週齡時外表皮膚L* a* b*值的結果顯示,兩子代母雞的b*值都顯著高於公雞 (p<0.05),子二代烏皮族群的L*值則較子一代族群低,表示子二代烏皮族群膚色較子一代的黑。36隻F2的屠體性狀發現內臟臟器黑色素沉積不均勻。烏骨雞的十全特徵中除了腳脛羽毛可能由多基因所控制外,其他性狀均可以孟德爾遺傳定律解釋。

The modern chicken has been considerably changed in the ability of meat and egg production was get higher and more various appearances than the ancestors. Therefore, chicken has a higher genetic variation which is the best material for genetic research. Silky fowl (SF) is a breed of chicken originated from China. They have a crest of feathers on the top of the head, turquoise earlobe, beard and muff, polydactyly, walnut comb, black skin, black muscle, black bone and ptilopody. They also have fluffy feathers so that their name comes from. The purpose of this study was to investigate the hereditary model for the ten special characters in the Silkie. One silky male from LRI mated with four L2 females to produce 86 F1 offspring. Then, four F1 males and 24 F1 females were used to generate 472 F2 in four hatches by half-sib mating. All F1 offspring had the same feather color and feather pattern as L2 strain and over 95% had black skin, black bone, black muscle, turquoise earlobes, polydactyly and crest. The F2 generation showed segregation in phenotype. Chi-square test indicated that polydactyly and rose comb, were controlled by a complete dominant autosomal gene, fibromelanin and crest were controlled by a incomplete dominant autosomal gene, the silky feather and white feather color are controlled by a single autosomal recessive genes. The results of the skin L*a*b* value of two generation at 25wk showed the b* value of female was significantly higher (p<0.05) than male and F2 had a lower L* value than F1. The pigment was not evenly distributed on the internal organs. According to this study, it indicated all special phenotypes in the Silkies follow Mendelian inheritance law except the feathered shank, which maybe controlled by polygene.
URI: http://hdl.handle.net/11455/25201
其他識別: U0005-2008200910432900
Appears in Collections:動物科學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.