Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/25217
標題: 飼糧銅鋅含量對保育豬生長性狀與銅鋅代謝之影響以及與飼糧F-2毒素(zearalenone) 含量之相關
Effect of Dietary Copper and Zinc Contents on Growth Performance and Metabolism of Copper and Zinc and Their Correlations with Dietary F-2 Toxin (zearalenone) Level in Nursery Piglets
作者: 周碧雅
Jaroensin, Jutharat
關鍵字: Copper;銅;Zinc;Growth;Metabolism;Zearalenone;Nursery pigs;鋅;生長;代謝;Zearalenone;保育豬
出版社: 動物科學系所
引用: 6. References Abdellah, Z., M. S. Jose, C. M. Juan., and M. Jordi. 2007. Review on the toxicity, occurrence, metabolism, detoxification, regulations and intake of zearalenone: An oestrogenic mycotoxin. Food Chem. Toxic. 45: 1-18. Alexandro, Y., and J. P. Jouany. 2002. Mycotoxins in feeds and their fate in animals: a review. Anim. Res. 51: 81-99. Alexopoulos, C. 2001. Association of Fusarium mycotoxicosis with failure in applying an induction of parturition program with pgf2 alpha and oxytocin in sows. Theriogenology. 55: 1746-l757. Apgar, G. A., E. T. Kornegay, M. D. Lindemann, and D. R. Notter. 1995. Evaluation of copper sulfate and a copper lysine complex as growth promotants for weanling swine. J. Anim. Sci. 73: 2640-2646. Blackmon, D. M., W. J. Miller, and J. D. Morton. 1967. Zinc deficiency in ruminants occurrence, effects, diagnosis, treatments. Vet. Med. 62: 265. Barber, R. S., R. Braude and K. G. Mitchell. 1955. Antibiotic and copper supplementations for fattening pigs. Br. J. Nutr. 9: 378. Barber, R. S., R. Braude, K. G. Mitchell, and J. Cassidy. 1955. High copper mineral mixtures for fattening pigs. Chem. Ind. 601-603. Baker, D.H., and C.B. Ammerman. 1995. Zinc bioavailability. In “Bioavailability of Nutrients for Animals”, p. 367-398 ed. by C.B. Ammerman, D.H. Baker, and A.J. Lewis Amino Acids, Minerals, and Vitamins. Academic Press, San Diego, CA. Barnea, A. 1987. Copper as a modulator of neuroendocrine secretion. In “Biology of Copper Complexes”, p.81 ed. by J.R.J. Sorenson. Humana Press, Clifton, NJ. Bennett, J.W., and M. Klich. 2003. Mycotoxins. Clin. Microbiol. Rev. 16: 497-516. Betina, V. 1989. Mycotoxins. In “Bioactive Molecules”, 9: p. 271. ed. by Betina, V. Elsevier: Amsterdam, The Netherlands. Blair, R. 2007. Nutrition and feeding of organic pigs. Bolan, N. S., M. A. Khan, and J. Donaldson. 2003. Distribution and bioavailability of copper in farm event. The Science of the Total Environment. 309: 225-236. Borger, M. L., L. L. Wilson, J. D. Sink, J. H. Ziegler and S. L. Davison. 1973. Zearalenol and dietary protein level effects of live performance, carcass merit, certain endocrine factors, and blood metabolite levels of steers. J. Anim. Sci. 36: 706-711. Braude, R. 1975. Copper as a performance promoter in pigs. In proc. “ Copper in farming symp”, p. 79-97. Copper development association, London. Bremner, I. 1993. Metallothionein in copper deficiency and toxicity. In “Processing of the eighth international symposium on trace elements in man and animals”, p. 507-515. ed. by Anke M., Meissner D. and Mills C. F. Verlag Media Touristik, Gersdort. Brink, M. F., D. E. Beaker, S. W. Terrill, and A. H. Jensen. 1959. J. Anim. Sci. 18: 836. Brumm, M. C. 1998. Sources of manure: Swine. In “Animal waste utilization: Effective use of manure as a soil resource”, p. 49-64. ed. by J. L. Hatfield and B. A. Stewart. Ann Arbor Press, Michigan. Braude, R. 1967. Copper as a stimulant in pig feeding (Cuprum pro pecunia). World Rev. Anim. Prod. 3: 69-82. Budesministerium, F. E., and U. F. Landwirtschaft (BML). 2000. Orientierungswerte fur die beurteilung der gehalte an deoxynivalenol und zearalenon in futtermitteln im rahmen des 3 des futtermittelgesetzes., p.1-2. BML, Berlin. Bunch, R. J., V. C. Speer, V. W. Hays, J. H. Hawbaker, and D. C. Catron. 1961. Effects of copper sulfate, copper oxide, and chlortetracycline on baby pig performance. J. Anim. Sci. 205: 23. Bunch, R. J., J. T. McCall, V. C. Speer, and V. W. Hays. 1965. Copper supplementation for weanling pigs. J. Anim. Sci. 24: 995. Carlson, M. S., G. M. Hill, and J. E. Link. 1999. Early and traditionally weaned nursery pigs benefit from phase-feeding pharmacological concentrations of zinc oxide: Effect on metallothionein and mineral concentrations. J. Anim. Sci. 77: 1199-1207. Carnes, W. H., C. S. Shields, C. E. Cartwright, and M. M. Winthrop. 1961. Vascular lesions in copper-deficient swine. Fed. Proc. 20: 118 (Abstr.). Carter, J. H., R. F. Miller, and C. C. Brooks. 1959. The effect of copper and calcium levels on the performance of growing swine. J. Anim. Sci. 18: 1502 (Abstr.). Case, C. L. and M. S. Carlson. 2002. Effect of feeding organic and inorganic sources of additional zinc on growth performance and zinc balance in nursery pigs. J Anim. Sci. 80: 1917-1924. Castillo, M.D., H.H.L. Gonza´lez, E.J. Mart2´nez, A.M. Pacin and S.L. Resnik, 2004. Mycoflora and potential production of freshly harvested black bean from the Argentinean main production area. Mycopathologia. 158: 107-112. Chelkowski, J. 1991. Mycological quality of mixed feeds and ingredients. In “Cereal grain, mycotoxins, fungi and quality in drying and storage”, p-217-227. ed. by Chelkowski J. Elsevier, Amsterdam, London, New York, Tokyo. Coppenet, M., J. Golven, J.C. Simon, and M. Le Roy. 1993. Evolution chimique des sols en exploitations d'e´levage intensif: exemple du Finiste`re. Agronomie 13: 77-83. Cousins, R. J. 1985. Absorption, transport and hepatic metabolism of copper and zinc with special reference to metallothionein and caeruloplasmin. Phys. Rev. 65: 238-309. Cousins, R. J. 1978. In “Proc. 3rd Intl. Symp. on trace element metabolism in man and animals”, p. 57 ed. by M. Kirchgessner. Arbeitskreis fur Trerenahrungsforschung Weihenstephan, West Germany. Cox, D. H., and O. M. Hale. 1962. Liver iron depletion without copper loss in swine for excess zinc. J. Nutr. 77: 225-228. Cole, R. J., and R. H. Cox. 1981. Handbook of toxic fungal metabolites. Academic Press, New York. Craigmill, A. L.1994. Environmental food safety issues. In “Cattle on the land; environmental sensitivity of beef production”, p.153-157. ed. by Byers F. M. College of Agriculture and Life Sciences, Texas A & M University College Station, Texas, USA. Creech, B. L., J. W. Spears, W. L. Flowers, G. M. Hill, K. E. Lloyd, T. A. Armstrong, and T. E. Engle. 2004. Effect of dietary trace mineral concentration and source (inorganic vs. chelated) on performance, mineral status, and fecal mineral excretion in pigs from weaning through finishing. J Anim. Sci. 82: 2140-2147. Cromwell, G. L., H. J. Monegue, and T. S. Stahly. 1989. Effects of source and level of copper on performance and liver copper stores in weanling pigs. J. Anim. Sci. 67: 2996-3002. Cromwell, G. L. 1997. Copper as a nutrient for animals. In “Handbook of Copper Compounds and Applications”, p. 177-202. ed. by H. W. Richardson, New York: Marcel Dekker, Inc. Cuero, R., E. Duffus, M. Williams, D. Bacaand, and M. Navarro. 1998. Effects of zinc and associated mycoflora on fungal growth and toxin production: F. moniliforme, F. graminearum, Aspergillus flavus. In “Mycotoxins and Phycotoxins - Developments in Chemistry, Toxicology and Food Safety, Chapter 33” pp. 311-319. ed. by Miraglia, M., van Egmond, H., Brera, C. and Gilbert, J. Fort Collins, CO: Alaken Inc. Cuero, R. 2001. Regulation of mycotoxins formation and fungal growth by metal ions and fertilizer: effect on fungal gene expression. In “Mycotoxins and Phycotoxins I Perspective at the Turn of the Millennium, Chapter 10”, p. 355-361, ed. by De Koe, W.J., Samson, R.A. van Egmond, H.P. Gilbert, J. and Sabino, M. Proceedings of the 10th International IUPAC Symposium on Mycotoxins and Phycotoxins, Guaruja, Brazil, 21-25 May 2000. The Netherlands, Wageningen. Cuero, R., T. Ouellet, J. Yu, and N. Mogongwa. 2003. Metal ion enhancement of fungal growth, gene expression and aflatoxin synthesis in Aspergillus flavus: RT-PCR characterization. J. Appl. Micro. 94: 953-961. Cuero, R., and T. Ouellet. 2005. Metal ions modulate gene expression and accumulation of the mycotoxins aflatoxin and zearalenone. J. Appl. Micro. 98: 598-605. Cromwell, G. L., M. D. Lindemann, H. J. Monegue, D. D. Hall, and D. E. Orr. 1998. Tribasic copper chloride and copper sulfate as copper sources for weanling pigs. J. Anim. Sci. 76: 118−123. Dalcera, A., C. Magnoli, S. Chiacchiera, G. Palacios, and M. Reynoso. 1997. Mycroflora and incidence of aflatoxin B1, zearalenone, and deoxynivalenol in poultry feeds in poultry feeds in Argentina. Mycopathologia. 137: 179-184. Davis, G. R. F., and J. D. Smith. 1981. Effect of light and incubation temperature on production by species of Fusarium of metabolites toxic to larvae of Tenebrio molitor L. Arch. Phys. Bio. 89: 81-84. Dove, C. R., and K. D. Haydon. 1991. The effect of copper addition to diets with various iron levels on the performance and hematology of weanling swine. J. Anim. Sci. 69:2013-2019. Edmonds, M. S., and D. H. Baker. 1986. Toxic effects of supplemental copper and roxarsone when fed alone or in combination to young pigs. J. Anim. Sci. 63: 533−537. Edmonds, M. S., O. A. Izquierdo, and D. H. Baker. 1985. Feed additive studies with newly weaned pigs: Efficacy of supplemental copper, antibiotics and organic acids. J. Anim. Sci. 60: 462-469. EFSA, (European Food Safety Authority). 2004. Opinion of the Scientific panel on contaminants in the food chain on a request from the Commission related to Zearalenone as undesirable substance in animal feed.The EFSA Journal. htt//www.efsa.eu.int/science/contam/contam_opinions/ 527/opinion_contam06_ej89_zearalenone_v3_en1.pdf 89 : 1-35. Elvehjem, C. A., and E. B. Hart. 1932. The necessity of copper as a supplement to iron for hemoglobin formation in the pig. J. Biol. Chem. 95: 363-370. European Commission. 2000. Health and consumer protection directorate general, opinion of the scientific committee on Fusarium mycotoxins. part 2, p 22. Follis, R. H., J. A. Bush, G. E. Cartwright, and M. W. Wintrobe. 1955. Studies on copper metabolism. XVIII. Skeletal changes associated with copper deficiency in swine. Bull. Johns Hopkins Hosp. 97: 405. Gadd, G.M. and C. White. 1989. Heavy metal and radionuclide accumulation and toxicity in fungiand yeast. “In Metal-Microbe Interactions, Chapter 2”, p. 19-38, ed. by Poole, R.K. and Gadd, G.M.. Oxford: IRL Press, Oxford University Press. Guillermo, G. G., and M. Gennard. 1967. Copper metabolism in the early postnatal period of the piglet. J. Nutr. 92: 237-244. Hahn, J. D., and D. H. Baker. 1993. Growth and plasma zinc responses of young pigs fed pharmacologic levels of zinc. J. Anim. Sci. 71: 3020-3024. Han, F. X., Kingery W.L., and Selim H. M. 2000. Accumulation of heavy metals in a long-term poultry waste amended soil. Soil Sci. 165(3): 260-268. Hawbaker, J. A., V. C. Speer, V. W. Hays, and D. V. Catron. 1961. Effects of copper sulfate and other chemotherapeutics in growing swine rations. J. Anim. Sci. 20: 163. Hedemann, M. S., B. B. Jensen, and H. D. Poulsen. 2006. Influence of dietary zinc and copper on digestive enzyme activity and intestinal morphology in weaned pigs. J. Anim. Sci. 84: 3310-3320. Hedges, J. D., and E. T. Kornegay. 1973. Interrelationship of dietary copper and iron as measured by blood parameters, tissue stores and feedlot performance of swine. J. Anim. Sci. 37: 1147-1154. Hedges, J. D., E. T. Kornegay, and H. R. Thomas. 1976. Comparison of dietary zinc levels for reproducing sows and the effect of dietary zinc and calcium on the subsequent performance of their progeny. J. Anim. Sci. 43: 453-463. Hellman, H., and M. Carlson. 1914. Feeding organic and inorganic sources of trace minerals for swine production. Swine nutrition. p 1-4. Hill, G. M., P. K. Ku, E. R. Miller, D. E. Ullrey, T. A. Losty, and B. L. O''Dell. 1983. A copper deficiency in neonatal pigs induced by a high zinc maternal diet. J. Nutr. 113: 867-872. Hill, G. M., G. L. Cromwell, T. D. Crenshaw, C. R. Dove, R.C. Ewan, D.A. Knable, A. J. Lewis, G. W. Libal, and D. C. Mahan. 2000. Growth promotion effects and plasma changes from feeding high dietary concentrations of zinc and copper to weanling pigs (regional study). J. Anim. Sci. 78: 1010-1016. Hsu, F. S., L. Krook, W. G. Pond, and J. R. Duncan. 1975. Interactions of dietary calcium with toxic levels of lead and zinc in pigs. J. Nutr. 105: 112-118. Hussein, S.H. and J. M. Brasel, 2001. Toxicity metabolism and impact of mycotoxins on humans and animals. Toxicol. 167: 101-134. Ivan, M., and C. M. Grieve. 1975. Effects of zinc, copper, and manganese supplementation of high concentrate ration on digestibility, growth, and tissue content of Holstein calves. J. Dairy Sci. 58: 410. Jackson, M., P. J. Slinger, and R. J. Bothas. 1989. Effects of zinc, iron, cobalt, and manganese on Fuarium moniliforme NRRL 1316 growth and fusarin C. Biosynthesis in submerged cultures. Applied and Environmental Microbiology 55: 649-655. JECFA. 2000. Joint FAO/WHO Expert Committee on Food Additives, 53rd Report. Safety evaluation of certain food additives. WHO Food Additives Series 44 (in print). Jondreville, C., P. S. Revy, and J. Y. Dourmad. 2003. Dietary means to better control the environmental impact of copper and zinc by pigs from weaning to slaughter. Lives. Prod. Sci. 84: 147-156. Kavanagh, N. T. 1992. The effect of feed supplemented with zinc oxide on the performance of recently weaned pigs In: Proc. “Int. Pig Vet. Meetings.” p 616. The Hague, The Netherlands. Kernkamp, H. C. H., and E. F. Ferrin. 1953. Parakeratosis in swine. J. Am. Vet. Met. Assoc. 123: 217. Kirchgessner, M. 1993. Trace elements in man and animals-TEMA 8.4-21. Gersdorf, Germany: Verlag Media. Kim, I. H., H. Y. Son, S. W. Cho, C. S. Ha, B. H. Kang. 2003. Zearalenone induce male germ cell apoptosis in rats. Toxicol. Lett. 138: 185-192. Kornegay, E. T., P. H. G. van Heugten, M. D. Lindemann and D. J. Blodgett. 1989. Effects of biotin and high copper levels on performance and immune response of weanling pigs. J. Anim. Sci. 67: 1471-1477. Krogh, P., B Hald, and E. J. Pedersen. 1995. Occurrence of ochratoxin A and citrinin in cereals associated with mycotoxic porcine nephrophaty. Act. a Pathol. Microbiol. Scand. 81: 689-695. Krska, R. and R. Josephs. 2001. The state-of-the-art in the analysis of estrogenic mycotoxins in cereals. Fresenius J. Anal. Chem. 369: 469-476. Kuiper, T., P. M. Scott, and H. Watanabe. 1987. Risk assessment of the mycotoxin zearalenone. Reg. Toxic. Phar. 7: 253-306. Kulwich, R., S. L. Hansard, C. L. Comar, and G. K. Davis. 1953. Copper, molybdenum, and zinc interrelationships in rats and swine. Proc. Soc. Exp. Biol. Med. 84: 487. Langseth, W., H. Stenwing, L. Sogn, and E. Mo. 1993. Growth of moulds and production of mycotoxins in wheat during drying and storage. Acta Agric. Scand Soilm (B) Plant Sci. 43: 32-37. Li, B. T., A. G. Van Kessel, W. R. Caine, S. X. Huang and R. N. Kirkwood. 2001. Small intestinal morpholopy and bacterial populations in ileal digesta and feces of newly weaned pigs receiving a high dietary level of zinc oxide. Can. J. Anim. Sci. 81: 511-516. Li, X., J. Yin, D. Li, X. Chen, J. Zang, and X. Zhou. 2006. Dietary supplementation with zinc oxide increases IGF-I and IGF-I receptor gene expression in the small intestine of weaning piglets. J. Nutr. 136: 1786-1791. Livesey, C. T. 1994. Contamination of animal feeds: a review of principal causes, detection, investigation and control of toxic contaminants. In “Pollution in livestock production systems” p.19-41. ed. by Dewi I. Ap, Axford R. F. E., Marai I. F. M. et al., Wallingford: CAB-International. Luo, X. G., and C. R. Dove. 1996. Effect of dietary copper and fat on nutrient utilization, digestive enzyme activities, and tissue mineral levels in weanling pigs. J. Anim. Sci. 74:1888-1896. Mahan, D. C., and R. G. Shields Jr. 1998. Macro- and micromineral composition of pigs from birth to 145 kg of body weight. J. Anim. Sci. 76: 506-512. Márcia, R. F., Geraldo, J. T. Dauri, and K. Carlos. 2006. Production of Mycotoxins by Fusarium graminearum isolated from small cereals (wheat, triticale and barley) affected with scab disease in southern Brazil. Braz. J. Micro. 37: 58-63. Marasas, W. F. O., P. E. Nelson, and T. A. Toussoun. 1984. Toxigenic Fusarium species. In “Identity and mycotoxicology.” p. 328. The Pennsylvania State University Press, U. S. A. Mason, K. E. 1979. A conspectus of research on copper metabolism and requirements of man. J. Nutr. 109: 1979. Matsui, T., and H. Yano. 1998. Formulation of low pollution feed for animal production. p. 110-119 in Proc. 8th World Conf. Animal Prod. Symp. Ser. 1, Seoul, Korea. Mc Donald, P., R. A. Edward, J. F. D. Greenhalgh, and C. A. Morgan. 2002. Animal nutrition. Ashford colour prees Ltd. Mc Dowell, L. R. 1992. Minerals in animal and human nutrition. Academic Press, London. Miller, E. R., H. D. Stowe, P. K. Ku, and G. M. Hill. 1979. Copper and zinc in swine nutrition. In National feed ingredients association literature. Miller, W. J. 1970. Zinc nutrition of cattle : a review. J. Dairy Sci. 53 : 1123. Miller, W. J. 1969. Absorption, tissue distribution, endogenous excretion, and homeostatic control of zinc in ruminants. Am. J. Clin. Nutr. 22: 1323. Miller, W. J. 1973. Dynamics of absorption rates, endogenous excretion, tissue turnover, and homeostatic control mechanisms of zinc, cadmium, manganese, and nickel in ruminants. Fed. Proc. 32: 1915-1920. Mills, C. F.1966. World Rev. Anim. Prod. 1: 51. Mirocha, R. J. 1971. “In Microbial Toxins”, 7: p. 107. Academic Press, New York. Miller, E. R. 1991. Iron, copper, zinc, manganese, and iodine in swine nutrition . In “swine nutrition,” p. 267-284 ed. by E.R. Miller, D. E. Ulley, and A. J. Lewis, eds. Stoneham, MA: Butterworth-Heinemann Publishing. Neish, G. A., and H. Cohen. 1981. Vomitoxin and zearalenone production by Fusarium graminearum from winter wheat and barley in Ontario. Can. J. Plant Sci. 61: 811-815. Nicholson, F. A., S. R. Smith, B. J. Alloway. 2003. An inventory of heavy metals inputs to agricultural soils in England and Wales. The Science of the Total Environment, 311: 205-219. NRC. 1980. National Research Council. NRC. 1998. Nutrient Requirements of Swine (10th ed.). National Academy Press, Washington DC. Okoli, I. C. 2005. Mycotoxin contaminsation of feedstuff and mycotoxicoses are neglected livestock production research topics in Nigeria. In “Reducing impact of mycotoxins in tropical”, p. 65. Agriculture with emphasis on Health and Trade in Africa. Okonkwo, A. C., P. K. Ku, E. R. Miller, K. K. Keahey, and D. E. Ullery. 1979. Copper requirement a baby pigs fed purified diets 12. J. Nutr. 109: 939-948. Papaioannou, D. S., S. C. Kyriakis, A. Papasteriadis. N. Roumbiesm, A. Yannakopoulos, and C. Alexopoulos. 2002. A field study on the effect of in-feed inclusion of a natural zeolite (clinoptilolite) on health status and performance of sows/gilts and their litters. Res. Vet. Sci. 72(1): 51-59. Parkinson, R. J. and R. Yells. 1985. Copper content in soil and herbage following pig slurry application to grassland. J. Agri. Sci. Cambridge. 105: 183-185. Parry, D. W., P. Jenkinson and L. McLeod.1995. Fusarium ear blight (scab) in small-grain cereals - a review. Plant Path. 44: 207-238. Pekas, J. C. 1985. Animal growth during liberation from appetite suppression. Growth Dev. Aging. 49: 19. Pekas, J. C. and W. E. Trout. 1990. Stimulation of food intake and growth of swine by cholecystokin immunization. Growth Dev. Aging. 5451. Pierre, S., J. Catherine, Y. D Jean, G. Franois, and N. Yves. 2002. Bioavailability of two sources of zinc in weanling pigs. Anim. Res. 51: 315-326. Pittet, A. 2001. Natural occurrence of mycotoxins in foods and feeds: a decade in review. In “ Mycotoxins and Phycotoxins in Perspective at the Turn of the Millenium, Chapter 6”, p. 355-361. ed. by De Koe, W.J., Samson, R.A. van Egmond, H.P. Gilbert, J. and Sabino, M Proceedings of the 10th International IUPAC Symposium on mycotoxins and phycotoxins, Guaruja, Brazil, 21-25 May 2000. The Netherlands: Wageningen. Placinta, C. M., J. P. F. D'Mello, and A. M. C. Macdonald. 1999. A review of worldwide contamination of cereal grains and animal feed with Fusarium mycotoxins. Anim. Feed Sci. Technol. 78: 21-37. Prince, T. J., V. W. Hays, and G. L. Cromwell. 1984. Interactive effects of dietary calcium, phosphorus and copper on performance and liver copper stores of pigs. J. Anim. Sci. 58: 356-361. Poulsen, H. D. 1989. Zinc oxide for pigs during weaning. Meddelelse No. 746. Statens Husdrybrugsforsoeq (Denmark). Poulsen, H. D. 1995. Zinc oxide for weanling piglets. Acta Agric. Scand. Sect. Anim. Sci. 45: 159-167. Poulsen, H. D. 1998. Zinc and copper as feed additives, growth factors or unwanted environmental factors. J. Anim. Feed Sci. 7: 135-142. Richards, M. P., and R. J. Cousins. 1976. Zinc binding protein: relationship to shortterm changes in zinc metabolism. Proc. Soc. Exp. Biol. Med. 153: 52-56. Riley, R. T. 1998. Mechanistic interactions of mycotoxins: Theoretical considerations. In “Mycotoxins in Agri”, p. 227-253. Ed. by Sinha, K.H. Bhatnagar, D. Food Safety. Marcel Dekker, Inc., New York. Rincker, M. J., G. M. Hill, J. E. Link, A. M. Meyer, and J. E. Rowntree. 2005. Effects of dietary zinc and iron supplementation on mineral excretion, body composition, and mineral status of nursery pigs. J Anim. Sci. 83: 2762-2774. Roof, M. D., and D. C. Mahan. 1982. Effect of carbadox and various dietary copper levels for weanling swine. J. Anim. Sci. 55: 1109-1117. Schell, T. C., and E. T. Kornegay. 1996. Zinc concentration in tissues and performance of weanling pigs fed pharmacological levels of zinc from ZnO, Zn-methionine, Zn-lysine, or ZnSO4. J Anim. Sci. 74: 1584-1593. Scott, M. E., and K. G. Koski. 2000. Zinc deficiency impairs immune responses against parasitic nematode infections at intestinal and systematic sites. J. Nutr. 130: 1412S-1420S. Scudamore, K. A., and S. Patel. 2000. Survey for ochratoxin A, zearalenone and fumonisins in maize imported into the united kingdom. Food Addit. Contam. 17: 407-416. Shankar, A. H., and A. S. Prasad. 1998. Zinc and immune function: the biological basis of altered resistance to infection1-3. American J. Clin. Nutr. 68: 447S-463S. Shurson, G. C., P. K. Ku, G. L. Waxler, M. L. Yokoyama, and E.R. Miller. 1987. In “ Trace element metabolism in man and animals (TEMA-6) ”, p. 53. ed. by L. S. Shupe, J. P. Petarson, and N. C. Leone. Plenum Press, Salt Lake City, Utah. Smith, J. E., and M.O. Moss. 1985. Mycotoxins. In “ Formation, analysis and significance”, p.148. ed. by John Wiley and Sons. Chichester, UK. Smith, J. E., and G. L. Solomons. 1994. Mycotoxin in Human Nutrition and Health. EC Directorate-General XII, Science Research and development EUR 16048 EN. Smith, J. W., M. D. Tokach, R. D. Goodband, J. L. Nelssen, and B. T. Richert. 1997. Effects of the interrelationship between zinc oxide and copper sulfate on growth performance of early-weaned pigs. J. Anim. Sci. 75: 1861-1866. Spears, J. W. 1996. Optimizing mineral levels and sources for farm animals. In “Nutrient management of food animals to enhance and protect the Environment”, p 259-275. ed. by E. T. Kornegay, ed. CRC Press, Inc., Boca Raton, FL. Stahly, T. S., C. L. Cromwell, and H. J. Monegue. 1980. Effects of the dietary inclusion of copper and (or) antibiotics on the performance of weanling pigs. J. Anim. Sci. 51: 1347-1351. Stake, P. E., W. J. Miller, and R. P. Gentry. 1973. Zinc metabolism and homeostasis in ruminants as affected by dietary energy intake and growth rate. Proc. Soe. Exp. BioL Med. 142: 494. Strain, W. J. 1970. Trace element metabolism in animal. J. Vet. Res. 45: 698. Suttle, N. F., and C. F. Mills. 1966. Studies of toxicity of copper to pigs I. Effects of oral supplements of zinc and iron salts on the development of copper toxicosis. Br. J. Nutr. 20: 135-148. Sutton, J. C. 1982. Epidemiology of wheat head blight and maize ear rot caused by Fusarium graminearum. Canadian. J. Plant Path. 4: 195-209. Swiatkiewicz, S., J. Koreleski, D. Q. Zhong. 2001. The bioavailability of zinc from inorganic and organic sources in broiler chickens as affected by addition of phytase. J. Anim. Feed Sci. 10: 317-328. Tanaka, T., A. Hasegawa, S. Yamamoto, Lee US, Y. Sugiura, and Y. Ueno. 1988. World wide contamination of cereals by the Fusarium mycotoxins, nivalenol, deoxynivalenol, and zearalenone. 1. Survey of 19 countries. J Agric. Food Chem. 36: 979-983. Taylor, D.J. 1999. Mycotoxicoses. In “Pig Diseases”, p. 255-264. ed. by D.J. Taylor, St Edmundsbury Press Ltd, Bury St Edmunds, Suffolk, UK. Third Conference International FAO/OMS/PNUMA; Tunis,Tunisia, March 1999. Teague, H. S., and L. E. Carpenter. 1951. The demonstration of copper efficiency in young growing pigs. J. Nutr. 43: 389-399. Tucker, M. R. 1997. Experiences with metal toxicities in North Carolina. p. 97-100 in Proc. Soil Sci. Soc. of North Carolina, Raleigh. Underwood, E. J. 1962. Trace elements in human and animal nutrition. Academic Press, New York. Underwood, E. J., and N. F. Suttle. 1999. The mineral nutrition of livestock. p. 477-512. 3rd edition. CAB International, United Kingdom. Unwin, R. J. 1977. Copper in pig slurry: Some effects and consequences of spreading on grassland. In “Inorganic pollution in agriculture”, p. 306-319. M. A. F. F. Reference Book no. 326. HMSO, London. Underwood, E. J. 1977. Trace elements in human and animal nutrition. Academic press, New York. Urraca, J. L., B. P. Elena, P. C. Cancepcion, C. M. B. Mama, and J. P. James. 2005. Analysis of zearalenone in cereal and swine feed samples using an automated flow-through immunosenso. J. Agric. Food Chem. 53: 3338-3344. Verddal, K., and D. Ryan. 1979. Naturally occurring estrogens in plant foodstuffs. J. Food Prot. 42: 577-583. Wallace, H. D. 1967. High level copper in swine feeding. In “International Copper Research Association”, Inc., New York. Wedekind, K. J., A. J. Lewis, M. A. Giesemann, and P. S. Miller. 1994. Bioavailability of zinc from inorganic and organic sources for pigs fed corn-soybean meal diets. J. Anim. Sci. 72: 2681-2689. Weinberg, E. 1977. Mineral element control of microbiol secondary metabolism. In “ Microorganisms and Minerals, Chapter 7”, 3: p. 289-316. ed. by Weinberg, E. Marcel Dekker, Inc., New York. Ward, T. L., G. A. Asche, G. F. Louis, and D. S. Pollmann. 1996. Zinc-methionine improves growth performance of starter pigs. J. Anim. Sci. 74 (Suppl. 1): 303 (Abstr.). Williams, D. T .1991. Storage of grains and seeds. In “mycotoxins and animal food”, p. 721-746. ed. by Smith J. E., Henderson R. S. CRS Press, London. Weigand, E., and M. Kirchgessner. 1980. Total true efficiency of zinc utilization: determination and homeostatic dependence upon the zinc supply status in young rats. J. Nutr. 110: 469-480. Yiannikouris, A., and J. P. Jouany. 2002. Mycotoxins in feeds and their fate in animals: a review. Anim. Res. 51: 81-99. Zhang, J. H., L. Mu, and L. Z. Guan. 1994. The survey of organic fertilizer resources and the quality estimate in Liaoning province. Chin. J. Soil Sci. 25(7): 37-40. Zervas, G., E. Nikolaou, and A. Mantzios. 1990. Comparative study of chronic copper poisoning in lambs and young goats. Anim. Prod. 50: 497-506. Zhou, W., E. T. Kornegay, M. D. Lindemann, J. W. G. M. Swinkels, M. K. Welten, and E. A. Wong. 1994. Stimulation of growth by intravenous injection of copper in weanling pigs. J. Anim. Sci. 72: 2395-2043.
摘要: 
中文摘要
許多保育豬之飼糧使用高銅鋅含量以減少消化道疾病的發生和促進生長性能。保育豬攝取的礦物質大多未蓄積於體內,而是透過糞便及尿液排出。糞便及尿液中殘餘之礦物質,特別是銅和鋅,會對環境形成汙染之風險,若將保育豬飼糧中之礦物質含量適當調整可使汙染問題減少。此外,飼糧中含有Fusarium spp.會產生如Zearalenone (ZON)之黴菌毒素,而對禽畜產生不利於健康和生長之影響。飼糧中含有高銅鋅含量或可減少真菌生長進而降低黴菌毒素之產生。但其作用機制還須更進一步的驗證。本篇論文之目的即為研究飼糧中低濃度銅鋅含量對保育豬生長性狀與銅鋅代謝之影響以及與飼糧中Zearalenone含量之相關。結果表示,保育豬餵飼銅含量為 12 mg/kg且鋅含量為60 mg/kg或銅含量為24 mg/kg且鋅含量為120 mg/kg之飼糧於生長試驗結束時之體重較高(P = 0.0063)且日增重為最高(P = 0.0008)。飼料換肉率和每日飼料消耗量不受生長試驗之飼糧之銅鋅含量之影響,但代謝試驗之保育豬餵飼銅含量為 12 mg/kg且鋅含量為60 mg/kg和銅含量為12 mg/kg且鋅含量為90 mg/kg之飼糧其飼料換肉率較高(P = 0.0177)。保育豬血清中鋅含量不受飼糧中銅鋅含量之改變而有所差異,但生長試驗保育豬餵飼銅含量為 150 mg/kg且鋅含量為140 mg/kg之飼糧2週後其血清銅濃度為最高。下痢指數不受飼糧中銅鋅含量之改變而有所差異。保育豬之營養分消化率和能量及氮之平衡不受試驗飼糧中銅鋅含量之改變而有所差異。保育豬餵飼銅含量為150 ppm且鋅含量為140 ppm之飼糧對銅之蓄積量(mg/d)為最高(P = 0.0001)。保育豬餵飼高銅鋅含量之飼糧其糞便及尿液之銅鋅含量較餵飼低銅鋅含量飼糧者高。飼糧之鋅量(mg/kg)與ZON含量(μg/kg)間呈顯著負相關(r = -0.4692, P = 0.0319)顯示鋅可作為抑黴劑來抑制黴菌毒素產生,此或可解釋為何銅含量為 150 mg/kg且鋅含量為140 mg/kg之飼糧未能檢測出ZON。綜上所述,飼糧銅含量為 12 mg/kg且鋅含量為60 mg/kg或飼糧銅含量為 24 mg/kg且鋅含量為120 mg/kg對於保育豬可提供較佳之生長及較低之排泄物銅鋅殘留。鋅可作為抑黴劑來控制黴菌毒素產生,此點還需要進一步的研究驗證。

Abstract
Many piglet diets contain high levels of copper (Cu) and zinc (Zn) in order to reduce the incidence of digestive disorder and improve growth performance. Most of trace minerals ingested by piglets are not retained but excreted via feces and urine. Emission of trace minerals to the environment raises environmental pollution risks, especially for Cu and Zn. The problem can be reduced by appropriate inclusion of the minerals in the feed for piglets. Moreover, feed contaminated by Fusarium fungi may produce mycotoxins, for instance zearalenone (ZON), and lead to adverse effects on health and production of animals. High level of Cu and Zn in diets may be a way to reduce mycotoxin production from fungi. However, its efficacy needs of further confirmation. The aim of this study was to investigate the effect of rations containing low Cu and Zn levels on growth performance and metabolism of Cu and Zn for nursery piglets and to study their correlations to dietary ZON level. The results showed that dietary contents of 12 mg Cu/kg plus 60 mg Zn/kg or 24 mg Cu/kg plus 120 mg Zn/kg resulted in greater final body weight (P = 0.0063) and average daily gain (P = 0.0008) in growth trial. Feed conversion ratio (FC) and daily feed consumption (g/d) were not affected by dietary Cu and Zn levels in growth trial, but FC was greater (P = 0.0177) in pigs fed with 12 mg Cu/kg plus 60 mg Zn/kg containing diet and 12 mg Cu/kg plus 90 mg Zn/kg containing diet in metabolism trial. Varying dietary Cu and Zn levels resulted in no difference of serum Zn concentration but the highest serum Cu concentration resulted in pigs fed with 150 mg Cu/kg plus 140 mg Zn/kg at week two of the experiment. There were no differences in diarrhea score by varying dietary Cu and Zn contents. Other than that, there were no difference in the digestibilities of nutrients and balance of energy and nitrogen among the treatments of varying dietary Cu and Zn contents. The highest Cu was retention (mg/d) (P = 0.0001) in pigs fed 150 ppm Cu plus 140 ppm Zn containing diet. High Cu and Zn containing ration resulted in more fecal and urinary excretion of Cu and Zn when compared with low Cu and Zn containing rations. There was a negative correlation between dietary contents of Zn (mg/kg) and ZON (µg/kg) (r = -0.4692, P = 0.0319) indicating that Zn might be a mold inhibitor for reducing mycotoxin production and that might explain why ZON could not be detected in diet containing 150 mg Cu/kg plus 140 mg Zn/kg. In conclusion, dietary contents of 12 mg Cu/kg plus 60 mg Zn/kg or of 24 mg Cu/kg plus 120 mg Zn/kg may be the suitable levels for nursery piglets to support optimal growth and low excretion of Cu and Zn. Zinc may be a mold inhibitor to control mycotoxin production, which deserves more researches to confirm it.
URI: http://hdl.handle.net/11455/25217
其他識別: U0005-2108200911310100
Appears in Collections:動物科學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.