Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/2521
標題: 利用次波長結構光碟片之螢光太陽能聚合器
Luminescent Solar Concentrators Using Subwavelength-Structured Optical Discs
作者: 吳俊灝
Wu, Jyun-Hao
關鍵字: luminescent solar concentrator;太陽能螢光聚合器;subwavelength;optical disc;次波長結構;光碟片
出版社: 機械工程學系所
引用: 1.黃惠良, 曾百亨, ”太陽電池Solar Cell”, 五南圖書出版社 (2008) 2.W. H. Weber, J. Lambe, Appl. Opt. 15(10), 2299-2300 (1976) 3.A. Burgers, L. Slooff, A. Büchtemann, J. A. M. Van Roosmalen “Performance of single layer luninescent concentrators with multiple dyes”, Conference Record of the IEEE Photovoltaic Energy Conversion, vol. 1, p. 198-201 (2006) 4.L. H. Slooff, R. Kinderman, A. R. Burgers, A. Büchtemann, R. Danz, T. B. Meyer, A. J. Chatten, D. Farrell, K. W. J. Barnham, and J. A. M. Van Roosmalen, “The luminescent concentrator illuminated,” Proceedings of SPIE - The Intermational Society for Optical Engineeering, vol. 6197, p. 1-8 (2006) 5.M. G. Debije, J. P. Teunissen, M. J. Kastelijn, P. C. Verbunt, C. Bastiaansen, “The effect of a scattering layer on the edge output of a luminescent solar concentrator”,Solar Energy Materials and Solar Cells, vol. 93, No. 8, p. 1345-1350 (2009) 6.K.R. Mclntosh, N. Yamada, B.S. Richards, “Theoretical comparison of cylindrical and square-planar luminescent solar concentrators”, Applied Optics, vol. 2, No. 88, p. 285-290 (2007) 7.A.A. Earp, G.B. Smith, P.D. Swift, J. Franklin, “Maximising the light output of a Luminescent Solar Concentrator”, Solar Energy, vol. 76, No. 6, p. 655-667 (2004) 8.A.A Earp, G.B. Smith, J. Franklin, P. Swift, “Optimisation of a three-colour luminescent solar concentrator daylighting system”, Solar Energy Materials and Solar Cells, vol. 84, No. 1-4, p. 411-426 (2004) 9.A.J. Chatten, K.W.J. Barnham, B.F. Buxton, N.J. Ekins-Daukes, M.A. Malik, “A new approach to modelling quantum dot concentrators”, Solar Energy Materials and Solar Cells, vol. 75, No.3-4, p.363-371 (2002) 10.J.C. Goldschmidt, M. Peters, A. Bosch, H. Helmers, F. Dimroth, S.W. Glunz, G.. Willeke, “Increasing the efficiency of fluorescent concentrator systems”, Solar Energy Materials and Solar Cells, vol. 93, No. 2, p. 176-182 (2008) 11.D. N. Wright, E. S. Marstein, A. Holt, "Double layer anti-refractive coatings for silicon solar cell", Conference Record of the Thirty-first IEEE Photovoltic specialists conference, vol. 3, p. 1237-1240 (2005) 12.T. Fujibayashi, T. Matsui, M. Kondo, "Improvement in quantum efficiency of thin film Si solar cells due to the suppression of optical reflectance at transparent conducting oxide/Si interface by TiO2/ZnO antireflection coating", Applied Physics Letters, vol. 88, No. 18, p. 183508 (2006) 13.K. N. Chopra, S.K. Manchanda, R. Hradaynath, “Triple-layer broad band antireflection coatings using homogeneously mixed dielectric coatings”, Thin Solid Films, vol.55, No. 1, p. 49-53 (1978) 14.V. T. Daudrix, J. Guillet, F. Freitas, A. Shah, C. Ballif, P. Winkler, M. Ferreloc, S. Benagli, X. Niquille, D. Fischer, R. Morf, "Characteristion of rough reflecting substrates incorporated into thin-film silicon solar cells", Progress in Photovoltaics: Research and Applications, vol. 14, No. 6, p. 485-498 (2006) 15.S. S. Lo, C. C. Chen, F. Garwe, T. Pertch, "Broad-band anti-reflection coupler for a:Si thin film solar cell", Applied Physics, vol. 40, No. 3, p. 754-758 (2007) 16.M. Auslender, D. Levy and S. Hava, "One-dimensional antireflection gratings in (100) silicon: a numerical study", Applied Optics, vol. 37, p. 369-373 (1988) 17.W. Zhou, M., L. C. Tao, H. Yang, "Micorstuctured surface design for omnidirectional antireflection coatings on solar cell", Applied Physics, vol. 102, p. 103105 (2007) 18.M.G. Moharam, T.K. Gaylord, “Diffraction analysis of dielectric surface-relief gratings”, Journal of the Optical Society of America, vol.72, No. 10, p. 1385-1392 (1982) 19.E. Hecht, “Optics”, Pearson Education (2002) 20.H. P. Herzig, ”Micro-optics:elements、systems and applications”, Taylor & Francis (1997) 21.李正中, “薄膜光學與鍍膜技術”, 藝軒圖書出版社 (2006) 22.孫逸民, 陳玉舜, 趙敏勳, 謝明學, 劉興鑑, “儀器分析”, 全威圖書有限出版社, (2000) 23.謝尚融, “次波長結構光碟片對光封存效應之研究”, 國立中興大學機械工程研究所 (2008)
摘要: 
本論文目的在於利用光碟片的次波長結構以及搭配抗反射膜以提升太陽能螢光聚光器(luminescent solar concentrator , LSC)的光波導效應。而太陽能螢光聚合器主要能廣泛應用於透明材質、如應用於與建築結合的太陽光電(building-integrated photovoltaic, BIPV)。
藉由向量繞射理論與光柵軟體的模擬,分析次波長結構表面之週期與深度對光波導效應之影響,使入射光更能有效的利用。基板表面的次波長結構能使入射光被繞射產生高階繞射光束,若繞射角度大於全反射之臨界角便能增加整個系統的光波導效應。然而不同的入射光波長繞射角度均不相同,考慮螢光材料的吸收與放射光譜,選擇合適的結構週期與結構深度,則能增加整個系統內部光波導效應。實驗結果發現表面具結構的螢光聚光導板能使基板邊緣波導光於不同波段提升1~5%。
研究最後,我們於太陽能螢光聚合器表面鍍製適合螢光層吸收光譜範圍的抗反射薄膜。基板表面的反射率在此波段能降低4~5%,進而提升螢光放光效率並使基板邊緣的光波導效應增加。實驗結果得知結構基板表面具抗反射膜可使光波導效應再提升0.5%。

The purpose of this study is to use the subwavelength structure of optical discs and anti-reflection coating to improve the optical waveguide effect of the luminescent solar concentrator (LSC). It can be widely applied to transparent materials, such as the building-integrated photovoltaic (BIPV).
Through the vector diffraction theory and simulation by the grating software, we analyzed the influence of the period and depth of the subwavelength-structured surface on the optical waveguide effect, for achieving more efficient use of incident light. The subwavelength-structured surface allows the incident light to be diffracted into high order diffraction beams. It will give rise to an increase of the optical waveguide effect of the whole system if the diffraction angle is greater than the critical angle of total internal reflection. However, different wavelengths of incident light will cause different diffraction angles. In considering the absorption and emission spectrum of luminescent material, we selected the appropriate period and depth of the structure that will increase the internal optical waveguide effect of the whole system. According to the experimental results, we have found that the LSC with the structured surface can increase the optical waveguide effect of the substrate edge within 1~5% corresponding to different wavelengths.
In the end of the study, the surface of the LSC was coated with the anti-reflection film, which is suitable in the range of absorption spectrum of the luminescent layer. The reflectivity of the substrate surface presents a reduction of 4~5%, that enhances the efficiency of the luminescent emission and increases the optical waveguide effect of the substrate edge. The experimental result shows that antireflection coating on the surface of an optical substrate can further enhance the optical waveguide effect by 0.5%.
URI: http://hdl.handle.net/11455/2521
其他識別: U0005-2308201017202000
Appears in Collections:機械工程學系所

Show full item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.