Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/2525
標題: 一個醫院建築中空調冰水系統之耗能模擬分析與節能評估
Energy Consumption Simulation and Energy Saving Evaluation for a Water Chiller in a Hospital Building
作者: 鄭景文
Wen, Cheng-Ching
關鍵字: P-S;P-S系統;VPF;e-Quest;hospital air conditioning;energy;computer simulation;VPF系統;e-Quest;醫院空調;能源;模擬
出版社: 機械工程學系所
引用: [1]BP, “Statistical Review Of World Energy Full Report”, June 2010. [2]經濟部能源局,「2010年能源產業技術白皮書」,99年4月。 [3]「空調系統管理與節能手冊」,台灣綠色生產力基金會,97年12月。 [4]吳德憲,「醫院建築設備節能評估方法之研究」,國立台北科技大學建築與都市設計研究所,95年6月。 [5]American Society of Heating, Refrigerating and Air-conditioning Engineers, ASHRAE Standard 90.1-2004. [6]陳理定,「熱力學第二定律在蒸發器捷能設計上之應用」,國立清華大學動力機械工程學系,91年1月 [7]經濟部節約能源服務中心,「醫院節能技術手冊」。 [8]林啟發,「亞洲地區辦公建築外殼節能計畫」,碩士論文,國立成功大學建築研究所,95年6月。 [9]范學維,「台中市醫院建築外殼耗能量設計因子之研究」,碩士論文,逢甲大學建築學系,93年6月。 [10]J. Yu, C. Yang, L. Tian, “Low-energy envelope design of residential building in hot summer and cold winter zone in China”, Energy Conversion and Management 40 (2008) 1536–1546. [11]L. Yang, J. C. Lam,J. Liu b, C.L. Tsang, “uilding energy simulation using multi-years and typical meteorological years in different climates”, Energy Conversion and Management 49 (2008) 113–124. [12]賴柏亨,「辦公大樓自然通風對ENVLOAD指標優惠評估之研究」,碩士論文,國立成功大學建築研究所,97年6月。 [13]林彥佐,「以能源分析模擬軟體(e-QUEST) 評估 EEWH 與 LEED 之認證」,碩士論文,國立交通大學機械工程學系,97年6月。 [14]Y. Zhu, “Applying computer-based simulation to energy auditing: A case study”, Energy Conversion and Management 40 (2008) 612–620. [15]M. Medrano. “Integration of distributed generation systems into generic types of commercial buildings in California”, Energy and Building, 40 (2008) 537-548. [16]趙偉嚴,「太陽能光電系統裝置於建築物頂樓之節能模擬分析-以一棟辦公大樓為例」,碩士論文,國立中興大學機械工程研究所,98年7月。 [17]F. W. Yu, K. T. Chan, “Environmental performance and economic analysis of all-variable speed chiller systems with load-based speed control”, Applied Thermal Engineering Vol. 29, pp. 1721-1729, 2009. [18]江耀章,「TAB/Cx應用於辦公大樓儲冰系統運轉效率改善之研究」,碩士論文,國立台北科技大學能源與冷凍空調工程系,97年6月。 [19]李瑞淋,「變冷媒系統運用於醫療場所之空調節能效益評估分析」,碩士論文,國立台北科技大學能源與冷凍空調工程系,97年6月。 [20]eQ-v3-63 Introductory Tutorial. [21]American Society of Heating, Refrigerating and Air-conditioning Engineers, “ASHRAE HANDBOOK 2009 - Fundamentals”, Chapter 2, Thermodynamics and Refrigeration Cycle, Second Law Themodynamics, P.2.2~P.2.13. [22]張滌淞,「由短期監測數據預估長期負載變化趨勢及節能改善方向」,碩士論文,國立台北科技大學能源與冷凍空調工程系,97年7月。 [23]「大型空調冰水系統規劃設計與節能省電效益分析」,升振企業有限公司(翻譯)。 [24]S. Heiple, D. J. Sailor, “Using building energy simulation and geospatial modeling techniques to determine high resolution building sector energy consumption profiles”, Energy Conversion and Management 40 (2008) 1426–1436. [25]A. Yezioro, B. Dong, F. Leite, “An applied artificial intelligence approach towards assessing building performance simulation tools”, Energy Conversion and Management 40 (2008) 612–620.
摘要: 
本研究探討醫院空調中冰水供水系統控制模式之節能成效,以一個中部某大型醫院作為模擬實際案例,首先建構一個可靠性高的醫院建築能耗模組,透過e-Quest軟體模擬醫院空調系統之能源使用量,經由改變醫院中之逐時空調負荷,以使模擬之能源使用量趨近於醫院建築每年實際之能源使用量,如此以確定醫院中的逐時空調負荷。
當能耗模組確定後,經由分別改變冰水供水系統中的一、二次泵 (共計四種不同之P-S系統)之控制模式或採用一次側變流量方式(VPF系統)的控制模式,得知在五種不同控制模式中,以VPF冰水供水之控制模式最為節能,其次依序為PVSV(一、二次泵皆為變頻)、PCSV(一次泵定頻配合二次泵變頻)、PVSC(一次泵變頻配合二次泵定頻)、PCSC(一、二次泵皆為定頻)。本研究得到的結論為VPF控制模式所產生之空調耗電量約佔PVSV控制模式之空調耗電量約97.1%,佔PCSV控制模式之空調耗電量約96%,佔PVSC控制模式之空調耗電量之90.6%,佔PCSC控制模式之空調耗電量之89.6%。上述得到的結果可以作為在改善大型醫院之舊空調系統節能評估時的最佳依據。

Energy saving due to a change of control strategy of ice-water supply in air conditioning system for hospital buildings was investigated. A case study was performed for a large hospital in the central part of Taiwan. In the beginning of the work, a reliable energy consumption mode for the hospital was constructed. Using the e-Quest software and adjusting the hourly cooling load, a good match between the energy consumption of the simulation result and that of the actual consumed electricity was achieved. This confirms the hour-by-hour cooling load of the hospital. After the energy consumption mode was assured. Five different ice-water supply strategies (four different P-S strategies, plus a VPF strategy) were investigated respectively. The simulation result reveals that the VPF is the most energy-saving strategy. For the rest, in sequence, they are PVSV (both primary and secondary pumps are controlled by inverters), PCSV (only secondary pump is controlled by inverter), PVSC (only primary pump is controlled by inverter) and PCSC (both primary and secondary pumps are fixed-frequency controlled). The result also shows that the yearly energy consumption of the air-conditioning system with the VPF is 97.1%, 96%, 90.6% and 89.6% of those with the PVSV, PCSV, PVSC and PCSC respectively. For renovating old air-conditioning system in hospital buildings, the acquired data can be used as a basis in evaluation of the energy consumption.
URI: http://hdl.handle.net/11455/2525
其他識別: U0005-2401201111051500
Appears in Collections:機械工程學系所

Show full item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.