Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/2528
標題: 利用不連續點和區塊接合進行形貌不連續相位展開
Phase unwrapping with physical discontinuities by residues and submap stitching
作者: 蔡宗燁
Tsai, Tsung-Yeh
關鍵字: residues;不連續點;phase unwrapping;submap-stitching;相位展開;區塊接合
出版社: 機械工程學系所
引用: 參考文獻 [1] A. Twitto, J. Shamir, A. Bekker and A. Notea, “Detection of internal defects using phase shifting holographic interferometry,” NDT&E Intl, vol. 29(3), pp. 163-173(1996). [2] O. J. Lokberg, “Recent developments in video speckle interferometry,” Speckle Metrology, pp. 157-194(1993). [3] K. Creath, “Phase-shifting speckle interferometry,” Apple. Opt., vol. 24, pp. 3053-3058(1985) [4] L. C. Granam, “Synthetic interferometry radar for topographic mapping,” Proc. IEEE, vol. 62, pp. 763-768(1974). [5] Creath K and Wyant JC. “Moire′ and fringe projection techniques,” Daniel Malacara, editor. Optical shop testing. ed. Wiley; pp. 653-685(1992). [6] Srinivasan, V., H. C. Liu, and M. Halioua, “Automated phase-measuring profilometry of 3-D diffuse objects, ” Applied Optics, Vol.23, pp.3105-3108(1984). [7] A. Baldi, “Two-dimensional phase unwrapping by quad-tree decomposition”, Appl. Opt.40(8), pp 1187-1194(2001). [8] R. M. Goldstein, H. A. Zebker and C. L. Werner,“Satellite radar interferometry : Two-dimensional phase unwrapping,”Radio Science, Vol.23, pp.713-720(1988). [9] J. M. Huntley, “Noise-immune phase unwrapping algorithm,” Appl. Opt.28(15), pp 3268-3270(1988). [10] Y. Zhu, Z. Luan, Q. Yang, W. Lu and L. Liu, “Novel method to construct aquality map for phase unwrapping based on modulation and the phase gradient,” Opt. Eng, Vol.45(10), 105601(2006). [11] Y. Lu, X. Wang and X. Zhang, “Weighted least-squares phase unwrapping algorithm based on derivative variance correlation map,” Optik, Vol.118, pp.62-66(2007). [12] D. C. Ghiglia and L. A. Romero, “Minimum Lp-norm two-dimensional phase unwrapping,” Opt. Soc. Am. A, Vol.13, pp1999-2013(1996). [13] Huang, P. S., F. Jin, and F. P. Chiang, “Quantitative evaluation of corrosion by a digital fringe projection technique, ” Optics and Lasers in Engineering, Vol.31(5), pp.371-380(1999). [14] Burning, D. R. Herriott , J. E. Gallagher , D. P. Rosenfeld , A. D. White and D. J. Brangaccio, “Digital Wavefront Measure Interferometry for Testing Optical surface and Lenses,” Appl. Opt., Vol.13, pp.2693(1974). [15] M. Huntley and H. Huntley, “Temporal phase-unwrapping algorithm for automated interferometry analysis,” Appl. Opt., Vol.32(17), pp.3047-3052(1993). [16] Salder and J. M. Huntley, “Temporal phase unwrapping : application to surface profiling of discontinuous objects,” Appl. Opt., Vol. 36, pp.2770-2775(1997). [17] Macy, Jr., "Two-dimensional fringe-pattern analysis," Appl. Opt., Vol. 22, pp.3898-3901(1983). [18] C. Ghiglia, G. A. Mastin, and L. A. Romero, "Cellular-automata method for phase unwrapping," J. Opt. Soc. Am. A, Vol.4, pp267-280 (1987). [19] 陳森案,「相位重建之影像處理技術應用於光學量測之研究」,中興大學機械工程學研究所碩士論文,2002。 [20] Miguel Arevallilo Herraez, David R. Burton, Michael J. Lalor, and Munther A. Gdeisat, “Fast two-dimensional phase-unwrapping algorithm based on sorting by reliability following a noncontinuous path”, Appl. Opt. , Vol. 41 (35), pp. 7437-7444, (2002)
摘要: 
本文提出一針對形貌不連續處理的相位展開法,它屬於空間域的相位展開法,首先將取得的圖像帶入相移公式轉換為包裹相位圖,然後先尋找因形貌不連續而產生的不連續點,再藉由這些不連續點的相互連接訂出形貌不連續的位置。利用該資訊並同時搭配區塊接合將影像分割成較小的子區塊,將各個子區塊分別進行平行相位展開,最後比較各個子區塊間的差異並消除此差異,使得還原後的相位圖只會在本身形貌不連續位置有著較明顯的落差。
實驗架構採用兩種方法,一是結構光方式,利用投影出到物體的正弦條紋,來進行低雜訊情況下,本文提出方法的適用性;另一則是電子斑點干涉術,透過干涉得到的變形前後影像彼此相減,來得到包裹相位圖,來進行較高雜訊情況下,本文提出方法的適用性。

The paper proposes a phase unwrapping method with physical discontinuties, it is a spatial phase unwrapping. First, change images into wrapped phase map through phase shift formula, then look for residues that appears because of physical discotinuties. Find out the position of physical discotinuties according to link each other of residuses. Use this information and submap stitching to cut image apart into smaller sub regions. Use parallel phase unwrapping separately to each sub region. Finally, compared difference of among each sub region boundary, and dispelling this difference. Make unwrapped phase map have more obvious drop in the position of physical discotinuties.
In this paper, there were two experiments, structured light method and electronic speckle pattern interferometry. The structured light method use sinusoidal fringe that projected to object, measured the relative altitude. Electronic speckle pattern interferometry use after changing interfere image to before changing interfere image and get wrapped phase map. Utilize two methods prove this paper proposes the suitability.
URI: http://hdl.handle.net/11455/2528
其他識別: U0005-2408201019014900
Appears in Collections:機械工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.