Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributorPai-Chung Tsengen_US
dc.contributor.advisorMing-Chyuan Luen_US
dc.contributor.authorHuang, Yao-Hsienen_US
dc.identifier.citation[1] Kunpeng, Z. , San, W. Y. and Soon,H.G., 2009, ”Wavelet analysis of sensor signals for tool condition monitoring:A review and someresults,” International Journal of Machine Tools & Manufacture Vol.49, pp.537-553. [2] Rehorn,G,Jiang,J., and Orban,E. ,2005, ” Sate-of-the-art methods and results in tool condition monitoring: a review,” Int J Adv Manuf Technol Vol.26, pp. 693–710. [3] Jantunen,E., 2002, ” A summary of methods applied to tool condition monitoring in drilling ” , International Journal of Machine Tools & Manufacture Vol.42 , pp.997–1010. [4] Li,X. 2002, ” Review A brief review: acoustic emission method for tool wear monitoring during turning ” , International Journal of Machine Tools & Manufacture Vol.42, pp.157–165. [5] Chae,J. , Park, S, S and Freiheit,T, 2006, ”Investigation of micro-cutting operations ” International Journal of Machine Tools & Manufacture Vol.46 , pp.313–332. [6] Byrne, G., Dornfeld, D., Inasaki, I., Ketteler, G., König, W. and Teti, R., 1995, “Tool condition monitoring (TCM)-the status of research and industrial application,” Annals of CIRP ,Vol.44, pp.541-567. [7] Kang, M.C. ,Kim, J. S. and Kim, J. H. , 2001 “A monitoring technique using a multi-sensor in high speed machining” Journal of Materials Processing Technology, Vol.113, pp.331-336. [8] Inasaki, I. , 1998, “Application of acoustic emission sensor machining processes for monitoring machining processes,” Ultrasonics, Vol.36, pp. 273-281. [9] Chen, X. , Li , B. , 2007,“Acoustic emission method for tool condition monitoring based on wavelet analysis” , Int J Adv Manuf Technol, Vol.33, pp.968-976. [10] Kannatey-Asibu, E. and Emel, E. , 1987, “LINEAR DISCRIMINANT FUNCTION ANALYSIS OF ACOUSTIC EMISSION SIGNALS FOR CUTTING TOOL MONITORING” , Mechanical Systems and Signal Processing, Vol.1(4), pp. 333-347. [11] Emel, E. and Kannatey-Asibu, E. , 1991, “Acoustic Emission Monitoring of Cutting Process – Negating the Influence of Varying Conditions” , journal of Engineering Materials an Technology, Vol.112, pp. 456-464. [12] Emel, E. and Kannatey-Asibu, E. , 1991, “Tool Failure Monitoring in Turning by Pattern Recognition Analysis of AE Signals” , ASME, Vol. 110, pp. 137-145. [13] Jemielniak, K. and Otman, O. , 1998, “Tool failure detection based on analysis of acoustic emission signals” , Journal of Materials Processing Technology, Vol.79, pp. 192-197. [14] Hutton, D. V. , and Hu, F. , 1999, “Acoustic Emission Monitoring of Tool Wear in End-Milling Using Time-Domain Averaging,” ASME, Vol.121, pp.8-12. [15] Kamarthi, S. V. , Kumara, S. R. T. and Cohen, P. H. , 2000, “Flank Wear Estimation in Turning Through Wavelet Representation of Acoustic Emission Signals” , JOURNAL OF MANUFACTURING SCIENCE AND ENGINEERING, Vol.122, pp.12-18. [16] Abu-Mahfouz, I. , 2003, “Drilling wear detection and classification using vibration signals and artificial neural network ,” International Journal of Machine Tools & Manufacture, Vol.43, pp. 707–720. [17] EL-Wardany,T. I. , GAO, D. , and Elbestawi, M, A. ,1995, “TOOL CONDITION MONITORING IN DRILLING USING VIBRATION SIGNATURE ANALYSIS,” Tools Manufaer, Vol.36, pp.687-711. [18] Alonso, F.J.and Salgado,D.R. , 2008, “Analysis of the structure of vibration signals for tool wear detection” Mechanical Systems and Signal Processing, Vol.22, pp.735-748. [19] Trabelsi, H. and Kannatey-Asibu, E. Jr. , 1991, “Pattern-recognition analysis of sound radiation in metal cutting,” The international Journal of Advanced Manufacturing Technology,” 1991, Vol.6, pp. 220-231. [20] Lu, M. C. and Kannatey-Asibu, E. Jr., 2002, “ Analysis of sound signal generation due to flank wear in turning,” Journal of Manufacturing Science and Engineering, Transactions of the JOURNAL OF MANUFACTURING SCIENCE AND ENGINEERING, Vol.124(4), pp. 799-808. [21] Rangwala, S. and Dornfeld, D. 1990, “Sensor Integration Using Neural Networks for Intelligent Tool Condition Monitoring,” JOURNAL FOR ENGINEERING FOR INDUSTRY, Vol.112, pp.112-228. [22] Kandilli,I. Sonmez,M. Ertunc, H. M. Cakir,B. , Huseyin, 2007, “Online Monitoring Of Tool Wear In Drilling and Milling By Multi-Sensor Neural Network Fusion,” Proceedings of the IEEE International Conference on Mechatronics and Automation,pp.1388-1394. [23] KIM,J. D. , CHOI, I. H. , 1996,“Development of a tool failure detection system using multi-sensors” ,INT.J.MachTools Manufact, Vol. 36, pp.861-870. [24] Binsaeid,S. Asfour,S. Cho,S. and Onar,A. , 2009, “Machine ensemble approach for simultaneous detection of transient and gradual abnormalities in end milling using multisensor fusion” , Journal of Materials Processing Technology, Vol. 209, pp. 4728–4738. [25] Deiab,I. , Assaleh,K. , and Hammad,F. , 2009, “On modeling of tool wear using sensor fusion and polynomial classifiers,” Mechanical Systems and Signal Processing, Vol. 23, pp.1719-1729. [26] Aliustaoglu,C. , Ertunc, M. H. and Ocak, H. , 2009 , “Tool wear condition monitoring using a sensor fusion model based on fuzzy inference system,” Mechanical Systems and Signal Processing Vol. 23 pp.539-546. [27] Ghosh,N. , Ravi,Y.B. , Mukhopadhyay,S. , Paul,K. , Mohanty, A. R. and Chattopadhyay, A. B. ,2007, “Estimation of tool wear during CNC milling using neural network-based sensor fusion,” 2007, Mechanical systems and signal Processing,”2007, Vol.21, pp.446-479. [28] Tarng,Y.S. and Lee,B.Y. ,1999, “Amplitude demodulation of the induction motor current for the tool breakage detection in drilling operations,” 1999, Robotics and Computer Integrated Manufacturing, Vol.15, pp. 313-318. [29] Kwak, J. S. ,2006, “Application of wavelet transform technique to detect tool failure in turning operations,” Int J Adv Manuf Technol, Vol.28, pp.1078-1083 [30] Malekiana,M. , Parka,S.S. and Martin,B.G. ,2009, “Tool wear monitoring of micro-milling operations,” Journal of Materials Processing Technology,Vol. 209, pp.4903–4914. [31] Tansel, I. , Rodriguez,O. ,1998, Trujillo, M. , Paz,E. and Li,W, “Micro-end-milling---I. Wear and breakage,” International Journal of Machine Tools & Manufacture,Vol.38, pp.1419-1436. [32] Tansel, I. , Arkan,T. , Bao,W.Y. , N. Mahendrakar, Shisler,B. , Smith,D. and McCool,M. , 2000,“Tool wear estimation in micro-machininng. Part II: neural-network-based periodic inspector for non-meetals,” International Journal of Machine Tools & Manufacture,Vol.40, pp.609-620. [33] Tansel, I. ,Trujillo, M. , Nedbouyan,A. , Velez, C. , Bao, W,Y. and Arkan,T. T. , 1998,“Micro-end-milling----III. Wear estimation and tool breakage detection using acoustic emission signals,” International Journal of Machine Tools & Manufacture,Vol.38, pp.609-620. [34] Jemielniak,K. and Arrazola,P.J. , 2008, “Application of AE and cutting force signals in tool condition monitoring in micro-milling,”CIRP Journal of Manufacturing Science and Technology, Vol.1, pp.97-102. [35] Zhu,k. , Wong, Y.S. and Hong,G.S, “Multi-category micro-milling tool wear monitoring with continuous hidden Markov models,” Mechanical Systems and Signal Processing, Vol.23, pp.547-560. [36] Wavelet Toolbox User''s Guide, 2008, [37] Schilling, R. J. and Harris, S. L., 2005, Fundamentals of Digital SignalProcessing Using MATLAB, Thomson. [38] Haykin, S., Van Veen, B., 2003, Signals and System, John Wiley & Sons. [39] Bishop, C. M., 2006, Pattern Recognition And Machine Learning,Springer. [40] Sergios Theodoridis, Konstantios Koutroumbas, 2009, Pattern Recognition, ELSECIER. [41] 顏嘉良,2008,應用類神經網路於微細切削刀具狀態偵測之研究,國立中 興大學,碩士論文。 [42] 謝萬澔,2009,應用類神經網路與振動訊號之微銑刀具狀態偵測系統開 發,國立中興大學,碩士論文。zh_TW
dc.description.abstract隨著光、機、電及生醫等產業的發展需求,零件的微型化及較高的加工精度為現今加工技術發展之趨勢,因應此需求,微細切削加工之發展漸漸有其必要性,但微細切削加工過程中,刀具極易產生磨耗,而刀具磨耗與產品精度之影響也較傳統尺寸更為顯著,因此對於微細刀具狀態之監控更為重要。 本研究之目標為分析探討主軸振動與聲射(AE)訊號在微細加工刀具磨耗偵測之應用特性,分別使用振動訊號及聲射訊號分析訊號特徵以及系統各參數對於刀具狀態之判別影響,以及利用判別融合(Decision fusion)整合兩感測器之刀具判別狀態情形,提升刀具狀態之判別之穩定度。研究之辨識系統包含了訊號轉換、特徵選取與辨識器設計三個主要模組,訊號經FFT 轉換,經由群組分離準則(Class mean scatter criteria)選取特徵訊號後以費雪線性辨識函式(Fisher linear discriminant function)判別加工中刀具之狀態。在訊號特徵與參數影響分析方面,分別探討三軸加速度與聲射(AE) 訊號之訊號特徵以及各訊號頻帶寬度、特徵選取個數以及加工過程刀具與筒夾間邊界條件對辨識系統之影響。 訊號分析結果顯示,AE 與 振動感應器裝置於主軸上之外掛夾具上,量測之訊號可偵測到微銑刀刀具磨耗之變動狀態。三軸振動訊號能量隨著刀具磨耗量之增加穩定的成長,實驗過程如改變筒夾夾持刀具之狀態則造成刀具磨耗之振動訊號能量不隨刀具磨耗量增加而增加,且呈無規則變化。在聲射訊號方面,主軸上量取刀具磨耗之聲射訊號,在頻率60KHz至70KHz訊號能量將較刀具未摩耗時增加,在頻率330KHz至400KHz間之頻率訊號能量則會因刀具與筒夾間狀態變動產生大的差異變化。在刀具狀態判別方面,三軸振動訊號考慮不同軸向訊號,特徵值個數與頻帶寬度對辨識率之影響並不相同,採用X軸振動訊號以及選擇235Hz頻寬特徵時,選取兩個特徵值輸入辨識器可達到90%刀具辨識率, Y與Z軸振動訊號則於選擇頻帶寬度120Hz時,分別輸入兩個與三個特徵個數,對於刀具辨識率可達到85%。對於調整過特徵向量之費雪線性類器,增加特徵個數至三與四個,其刀具辨識率可提升5%至10%。在AE 訊號方面,選擇頻帶寬度有助於刀具狀態辨識能力提升,頻帶於53.3KHz輸入兩個特徵值其平均刀具辨識率可達到75%,以判別融合之方式整合三軸振動訊號與聲射訊號可使刀具狀態辨識平均成功率可達到95%。zh_TW
dc.description.abstractAs the demand of the small feature and high accuracy for optical, electronic, and biomedical devices continuously increases, the micro mechanical machining plays an important role for improving their manufacturing quality and efficiency. Due to the higher tool wear rate than conventional counterpart, the tool wear monitoring in the micro machining draws much more attention than before. The objective of this thesis is to analyze the performance of tool wear monitoring system integrated with the spindle vibration and acoustic emission signal obtained from the spindle housing, as well as the study of the effect of system parameters on the system performance. For improving the classification rate, a decision fusion algorithm was also adopted to integrate the decision made from the spindle vibration and AE signal for tool wear monitoring. A micro tool condition monitoring system integrated by sensor system, signal transformation, feature selection, and classifier was developed in this study. In which, the FFT transformation was used for transforming the time domain signal to the frequency domains, the class mean scatter criteria was used to select the features closely related to the tool wear condition, and the Fisher linear discriminant function was the basis for designing the classifier. In the analysis of the parameters effect on the system performance, the bandwidth sizes of frequency domain signal, the number of the selected features and the change of contact between the tool and tool holder were studied. The results show that the AE and vibration signal obtained from the spindle housing can be used to detect the change of tool wear on a micro end mill. The energy of the vibration signal was observed to increase as the tool wear proceeds. However, when the tool was reinstalled between each pass of cutting, the same trend will not be kept. For the AE signal, the energy of signal between 60 kHz to 70 kHz was observed to increase as tool wear proceeds. In addition, the energy of signal between 330 kHz to 400 kHz was observed to change as the tool was reinstalled between each pass of cutting. In the tool wear classification results, the effect of system parameters such as bandwidth size of frequency domain signal, and the number of features selected on the system varied for the different direction of vibration signal. The best parameters selected for the case with the X direction vibration signal was two features selection along with bandwidth size of 235Hz, but two or three features selection along with bandwidth size of 120Hz was found to be best for the Y and Z direction vibration signal. Moreover, by modifying the Fisher linear discriminant function, the increase of feature number can improve the classification rate by 5% to 10%. In consideration of the AE signal case, the increase of the bandwidth size was observed to improve the classification rate to 75% with bandwidth size of 53.3 kHz. Finally, by integrating the decision from the discussed four signals, the classification can be improved and reaches 95%.en_US
dc.description.tableofcontents誌謝 I 摘要 II Abstract IV 目錄 VI 圖目錄 VIII 表目錄 XI 第一章、緒論 1 1.1前言 1 1.2 文獻回顧 3 1.3 研究目的與內容 6 1.4 本文架構 7 第二章、訊號轉換、特徵選取與分類器設計 8 2.1 訊號轉換 8 2.2 特徵選取法則 11 2.3 辨識器設計 13 2.3.1 費雪線性區分法 13 2.3.2 特徵向量之調整 15 2.4 分析探討刀具磨耗系統架構 18 第三章、刀具磨耗狀態偵測實驗設計 20 3.1 桌上型微型加工平台 21 3.2 量測模組 21 3.3 實驗規劃 22 第四章、刀具磨耗訊號分析與討論 25 4.1刀具磨耗之振動訊號分析 25 4.1.1 刀具磨耗之振動時域訊號分析 25 4.1.2 刀具磨耗之振動頻域訊號分析 29 4.1.3 改變刀具夾持狀態對振動訊號的影響 30 4.1.4 頻帶寬度對振動訊號特徵選取之影響 35 4.2 應用振動訊號於刀具狀態辨識之結果探討 39 4.2.1 訓練資料對刀具判別之影響 39 4.2.2 振動訊號頻帶寬度對刀具狀態辨識之影響 40 4.2.3特徵選擇數量對刀具狀態辨識之影響 42 4.2.4 費雪分類器調整特徵向量對振動訊號於刀具狀態辨識影響 43 4.3刀具磨耗之聲射訊號分析 45 4.3.1 刀具磨耗之聲射時域訊號與頻域分析 45 4.3.2 改變邊界條件對聲射訊號的影響 47 4.3.3 頻帶寬度對聲射訊號特徵選取之影響 48 4.4 使用聲射訊號對於刀具狀態辨識結果之探討 49 4.4.1 主軸上之聲射訊號對於刀具狀態辨識之探討 49 4.4.2 工件上之聲射訊號對於刀具狀態辨識之探討 51 4.5整合振動訊號與聲射訊號於刀具狀態辨識之結果 52 第五章、結論與未來展望 56 5.1 結論 56 5.2 未來展望 57 參考文獻 58zh_TW
dc.subjectMicro tool condition monitoringen_US
dc.subjectDecision fusionen_US
dc.subjectVibration signalen_US
dc.subjectAcoustic Emission signalen_US
dc.titleStudy of Vibration and AE Signals for Tool Wear Monitoring in the Micro Millingen_US
dc.typeThesis and Dissertationzh_TW
item.openairetypeThesis and Dissertation-
item.fulltextno fulltext-
Appears in Collections:機械工程學系所
Show simple item record
TAIR Related Article

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.