Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/2532
DC FieldValueLanguage
dc.contributor鄭金祥zh_TW
dc.contributorChin-Hsiang Chengen_US
dc.contributor李永明zh_TW
dc.contributor蔡建雄zh_TW
dc.contributor洪榮芳zh_TW
dc.contributorYung-Ming Leeen_US
dc.contributorChien-Hsiung Tsaien_US
dc.contributorRong-Fang Horngen_US
dc.contributor.advisor盧昭暉zh_TW
dc.contributor.advisorJau-Huai Luen_US
dc.contributor.author楊浚泯zh_TW
dc.contributor.authorYang, Chun-Minen_US
dc.contributor.other中興大學zh_TW
dc.date2011zh_TW
dc.date.accessioned2014-06-05T11:43:30Z-
dc.date.available2014-06-05T11:43:30Z-
dc.identifierU0005-2508201003123500zh_TW
dc.identifier.citation[1] Key World Energy Statistics 2009. Available at: www.iea.org/textbase/nppdf/free/2009/key_stats_2009.pdf [2]能源供給表,經濟部能源局,2009 [3] Wikipedia. renewable energy. Available at: http://en.wikipedia.org/wiki/File:Ren2008.png [4] Caleb C. Lloyd. 2009. A low temperature differential stirling engine for power generation. [5] Wikipedia. Stirling engine theory. Available at: http://en.wikipedia.org/wiki/Stirling_Cycle#theory [6] Urieli, Israel. 2008. Stirling Cycle Machine Analysis Ohio University Russ College of Engineering and Technology. Available at: http://www.ent.ohiou.edu/~urieli/stirling/me422.html. [7] Wikipedia. Stirling Engine. Available at: http://en.wikipedia.org/wiki/Stirling_engine. [8]http://www.photology.fr/stirling/stirlinglinear.html [9] MSI employs Stirling Engine Theory. Available at: http://www.tweaktown.com/news/9051/msi_employs_stirling_engine_theory/index.html [10]Clever Swedish and their AIP subs. Available at: http://zerosix.wordpress.com/2007/07/22/clever-swedes-and-their-aip-subs-part-1/ [11] Sandia, Stirling to build solar dish engine power plant. Available at: http://www.sandia.gov/news-center/news-releases/2004/renew-energy-batt/Stirling.htm [12] Hidekazu Takizawa Nobolu Kagawa. 2002. Performance of New Matrix for Stirling Regenerator. IECEC 37th. [13] 許世宗。2002。利用史特靈引擎回收焚化爐廢熱之熱傳分析。 [14] Bancha Kongtragool a, Somchai Wongwises b. A review of solar-powered Stirling engines and low temperature differential Stirling engines science direct. [15] 林育煌。2005。使用菱形驅動機構之同軸式史特靈引擎研究。 [16] 潘俊煌。2006。太陽能追蹤式碟型集熱史特靈發電系統。 [17] 蔣小偉。2007。太陽能微型渦輪史特靈複合式發電系統技術研發,國科會計畫。 [18]黃仲雍。2005。移氣閥式stirling引擎性能分析與測量。 [19]郭凱琳。2008。 γ型史特靈引擎性能模擬與內部流場分析。 [20]http://www.quirao.com/en/p/inventions/stirling-engines-/26674/hb28-bohm-stirling-engine.htm [21] Annand, W.J. Heat Transfer in the Cylinders of Reciprocating Internal Combustion Engine. Proc. Instn. Mech. Engrs, vol. 177. [22] The engineering toolbox. Available at: http://www.engineeringtoolbox.com/hydrogen-d_1419.html [23] Gas Viscosity Calculator. Available at: http://www.lmnoeng.com/Flow/GasViscosity.htm [24] Fundamental of Thermaldynamics by Sonntag, Borgnakke, Van Wylen sixth edition P.434. ISBN 0-471-15232-3 [25] http://www.bekkoame.ne.jp/~khirata/academic/schmidt/schmidt.htm [26] Yunus A. Cengel and Robert H. Fundamental of Thermal-Fulid Sciences. Turner ISBN 007-123926-x. [27] Tanaka, M., Yamashita, I. and Chisaka, F. Flow and heat transfer characteristics of Stirling engine regenerator in an oscillating flow JSME Inr J: Ser II (1990) 33 283-289zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/2532-
dc.description.abstract本文主要針對α型史特靈引擎內部流場進行分析、計算,以探討操作參數、設計參數對於引擎效率、輸出功率之影響,提供設計者做為參考、修正依據。本文分為兩個模式對史特靈引擎進行分析,第一部分為無再生器之引擎模式、第二部分為有再生器之引擎模式。本文依據熱力學模式推導出相關方程式,再利用MATLAB程式語言撰寫引擎性能分析程式計算。 經由改變引擎的設計參數,得知在無再生器模式中,引擎連通管尺寸對引擎性能有顯著的影響,在本模式中連通管長度越長導致效率越低、輸出功率越小,長度越短引擎效率越高、輸出功率越大。連通管的管徑在本模式中有最佳尺寸3mm。在相位角為90度時,引擎有最大輸出功率。當相位角為80度時,引擎有最大效率。熱傳係數比越大、引擎輸出功率越大、效率越高。當熱傳係數比為1時,引擎效率為7.81%、輸出功率為193.23W,當熱傳係數比提高至3時,引擎效率提高至13%、輸出功率提高至335.23W。 在有再生器的引擎模式中,加熱管尺寸對引擎性能分析的模擬中發現,加熱管長度、直徑有最佳值。相位角對於引擎性能影響的測試中發現,本模式中引擎在相位角為70度時有最大輸出功率,在相位角60度時效率有最大值。增加工作流體熱傳係數能有效提高引擎性能,當熱傳係數提高至3倍時,引擎效率由11.54%提升至13.52%,輸出功率可由99.78W提升至117.21W。 無再生器的模式中,引擎效率為7.81%,有再生器的模式中,引擎效率為12.07%,提升54.55%的引擎效率,由此可知加裝再生器確實能提升史特靈引擎之效率。 本研究發展出一個可藉由輸入引擎設計參數,計算出引擎效率與輸出功率的程式,欲製作史特靈引擎的設計者可藉由本程式先行估算該引擎可能的輸出功率與效率。zh_TW
dc.description.abstractThe aim of this study is to discuss the effect of engine parameters and engine performance of alpha type Stirling engine using thermodynamic and heat transfer analysis of the flow in the engine. In order to improve the engine performance, the simulation result could be used as a reference to the designer. In this study, two different models are conducted to evaluate Stirling engine. One is with regenerator and the other one is without regenerator. Based on the models which derived in this study we wrote a program with MATLAB to analysis the engine performance. Changing the design parameters in the model with no regenerator has affected the performance of Stirling engine. The size of connecting tube influences the engine performance strongly. In the model the shorter length of connecting tube results the greater power output and efficiency. The optimize diameter in this model is 3 mm. The maximum work output obtains at the phase angle 90 degrees, while the maximum efficiency occurs at 80 degree. The heat transfer coefficient has high inflection to the engine performance. To change the ratio of heat transfer coefficient from 1 to 3, the efficiency of engine varies from 7.81% to 13% and the work output varies from 193.23W to 335.23W. While testing the model with regenerator we have several results. The size of heating tube has great influenced the engine performance. There are the optimize length and diameter in the engine. Changing phase angle, we found out that at 70 degree engine has the maximum output and at 60 degree it has the greatest efficiency. Heat transfer coefficient ratio of the working fluid has strongly affected the engine performance, when the heat transfer ratio changes from 1 to 3, the engines efficiency varies from 11.54% to 13.52%, the power varies from 99.78 W to 117.21 W. The engine efficiency of Stirling engine with and without regenerator are 7.81% and 12.07% respectively. The utilized of regenerator could increases 54.55% of engine efficiency. The model could be used to design and evaluate Stirling engine performance and the modified design parameter could be performed. The results could be simulated before construct the engine.en_US
dc.description.tableofcontents摘要 i Abstract ii 目次 iv 表目次 vii 圖目次 viii 符號說明 xii 第一章 緒論 1 1.1背景介紹 1 1.2史特靈引擎循環 3 1.3史特靈引擎的形式 5 1.3.1α型史特靈引擎 5 1.3.2β型史特靈引擎 6 1.3.3γ型史特靈引擎 6 1.3.4自由活塞史特靈引擎 7 1.4史特靈引擎優缺點比較 8 1.5史特靈引擎之應用 8 1.6太陽能史特靈引擎系統構想 10 1.7文獻探討 12 1.8研究目的 13 1.9研究方法 13 第二章 無再生器引擎模式 14 2.1無再生器引擎之熱力學模式 15 2.1.1加熱室 15 2.1.2散熱室 16 2.2熱傳模式 17 2.2.1熱傳流率 17 2.2.2熱傳係數 18 2.2.3質量流率 18 2.3計算流程 20 2.4計算結果 22 2.4.1體積與體積變化率計算 23 2.4.2熱傳計算 23 2.4.3熱傳量變化 24 2.4.4溫度計算 25 2.4.5壓力變化 26 2.4.6質量與質量流率變化 27 2.4.7效率與做功量 29 2.5操作參數對引擎性能的影響 30 2.5.1引擎轉速對引擎性能的影響 30 2.5.2加熱室缸壁溫度對引擎性能之影響 33 2.5.3散熱室缸壁溫度對引擎性能之影響 36 2.5.4加熱端缸壁與散熱端缸壁溫度比對引擎效率之影響 40 2.6 設計參數對引擎性能之影響 41 2.6.1連通管長度對引擎性能之影響 41 2.6.2連通管管徑對引擎性能之影響 46 2.6.3相位角對引擎性能之影響 51 2.6.4 工作流體熱傳係數比對引擎性能之影響 54 第三章 有再生器引擎模式 58 3.1熱力學模式 58 3.1.1 加熱室 58 3.1.2散熱室 60 3.1.3加熱管 61 3.1.4散熱管 63 3.1.5再生器 64 3.2熱傳模式: 65 3.2.1熱傳流率 65 3.2.2質量流率 68 3.3計算流程 70 3.4 計算結果 71 3.4.1 體積與體積變化率計算 71 3.4.2 熱傳係數計算 72 3.4.3熱傳率變化 72 3.4.4 溫度計算 74 3.4.5 壓力變化 77 3.4.6 質量與質量流率變化 77 3.4.7 效率與做功量 78 3.5操作參數對引擎性能的影響 80 3.5.1 引擎轉速對引擎性能的影響 80 3.5.2 熱源溫度對引擎性能的影響 83 3.5.3 冷源溫度對引擎性能的影響 87 3.6 設計參數對引擎性能之影響 91 3.6.1 加熱管長度對引擎性能之影響 91 3.6.2 加熱管內部管徑對引擎性能之影響 95 3.6.3 相位角對引擎性能之影響 98 3.6.4 外部熱傳係數比對引擎性能之影響 102 3.6.5 工作流體熱傳係數比對引擎性能之影響 105 第四章 結論與未來展望 110 4.1結論 110 4.1.1無再生器引擎模式 110 4.1.2有再生器引擎模式 110 4.1.3再生器對史特靈引擎效率之影響 110 4.2未來展望 111 參考文獻 112zh_TW
dc.language.isoen_USzh_TW
dc.publisher機械工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2508201003123500en_US
dc.subjectα-type Stirling engineen_US
dc.subjectα型史特靈引擎zh_TW
dc.subjectthermodynamics modelen_US
dc.subjectengine performanceen_US
dc.subjectheat transfer coefficient ratioen_US
dc.subject熱力學模式zh_TW
dc.subject引擎性能zh_TW
dc.subject熱傳系數比zh_TW
dc.titleα-type史特靈引擎性能模擬與分析zh_TW
dc.titleα Type Stirling Engine Performance Analysisen_US
dc.typeThesis and Dissertationzh_TW
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.fulltextno fulltext-
item.languageiso639-1en_US-
item.grantfulltextnone-
Appears in Collections:機械工程學系所
Show simple item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.