Please use this identifier to cite or link to this item:
標題: 植酸酶活性測定與影響因子之探討
Study of methods and factors on phytase activity determination
作者: 蔡紫雲
Tsai, Tzu-Yun
關鍵字: phytase;植酸酶預拌劑;premix;radial enzyme diffusion method;酵素擴散圈法
出版社: 動物科學系所
引用: 余碧、許振忠、李滋泰、邱文石。1998。利用酵素擴散法測定飼料中添加酵素活性。中畜會誌。27(1)25-34。 詹雲清。2003。基因轉殖稻米生產植酸酶對肉雞生長性狀及磷排出率之影響。碩士論文。國立中興大學。 巫勝倉。2005。基因轉殖稻米生產植酸酶對肉雞生長之影響及應用擴散法測定植酸酶活性。碩士論文。國立中興大學。 Shridhar, K. S. and N. R. Reddy. 2001. Food phytates. CRC. Augspurger, N. R., D. M. Webel, X. G. Lei, and D. H. Baker. 2003. Efficacy of an E. coli phytase expressed in yeast for releasing phytate-bound phosphorus in young chicks and pigs. J. Anim. Sci. 81:474-483. Banks, K. M., K. L. Tompson, J. K. Rush, and T. J. Applegate. 2004. Effects of copper source on phosphorus retention in broiler chicks and laying hens. Poult. Sci. 83:990-996. BASF. 1997. Determination of phytase activity. Analytical method QM system No. AM E047DA01, BASF Aktiengesellschaft, Germany. Biehl, R. R., D. H. Baker, and H. F. DeLuca. 1998. Activity of various vitamin D3 analogs for improving phosphorus utilization in chicks receiving diets adequate in vitamin D3. Br. Poult. Sci. 39:408-412. Bijender, S. and T. Satyanarayana. 2009. Characterization of a HAP-phytase from a thermophilic mould Sporotrichum thermophile. Bioresour. Technol. 100 (6): 2046-2051. Bitar, K. and J. G. Reinhold. 1972. Phytases and alkaline phosphatase activities in the intestinal mucosa of rats, chicken, calf, and man. Biochim. Biophys. 268:442-452. Brady, S. M., J. J. Callan, D. Cowan, M. McGrane, and J. V. O’Doherty. 2002. Effect of phytase inclusion and calcium/phosphorus ratio on the performance and nutrient retention of grower-finisher pigs fed barley/wheat/soybean meal-based diets. J. Sci. Food Agric. 82:1780-1790. Brink, E. J., P. R. Dekker, E. C. van Beresteijn, and A. C. Beynen. 1991. Inhibitory effect of dietary soybean protein vs. casein on magnesium absorption in rats. J. Nutr. 121:1374-1381. Brune, M., L. Rossander, and L. Hallberg. 1989. Iron absorption; no intestinal adaptation to a high phytate diet. Am. J. Clin. Nutr. 49:542-545. Byrd, C. A., and G. Matrone. 1965. Investigations of chemical basis of zinc-calcium-phytate interaction in biological systems. Proc. Soc. Exp. Biol. Med. 119:347-354. Champagne, E. T. and M. S. Fisher. 1990. Binding differences of Zn (II) and Cu (II) ions with phytate. J. Inorg. Biochem. 38: 217-223. Clinton, S. K., M. Dieterich, D. G. Bostwick, L. M. Olson, A. G. Montag and F. Michelassi. 1987. The effects of ammonia on N-methyl-N-nitrosoguanidine induced colon carcinogenesis and ras oncogene expression. FASEB J. 46:585-588. Cowieson, A. J., and V. Ravindran. 2007. Effect of phytic acid and microbial phytase on the flow and amino acid composition of endogenous protein at the terminal ileum of growing broiler chickens. Br. J. Nutr. 98:745-752 Danisco. 2005. Danisco phytase in feed method of analysis. HBC. David, D. M., M. E. Carmen, W. N. Rex, and L. C. Henry. 1999. The effect of minerals and mineral chelators on the formation of phytase-resistant and phytase-susceptible forms of phytic acid in solution and in a slurry of canola meal. Anim. Feed Sci. Tech. 81:177-192. Davidsson, L., A. Almgren, M. A. Juillerat, and R. F. Hurell. 1995. Manganese aborption in humans: the effect of phytic acid and ascorbic acid in soy formula. Am. J. Clin. Nutr. 62:984-987. Denbow, D. M., E. A. Grabau , G. H. Lacy, E. T. Kornegay, D. R. Russell and P. F. Umbeck. 1998. Soybeans transformed with a fungal phytase gene improve phosphorus availability for broilers. Poult. Sci. 77:878-881. Deshpande, S. S., and M. Cheryan. 1984. Effects of phytic acid, divalent cations, and their interactions on alpha-amylase activity. J. Food Sci. 49:516-519. Dilger, R. N., E. M. Onyango, J. S. Sands, and O. Adeola. 2004. Evaluation of microbial phytase in broiler diets. Poult. Sci. 83:962-970. DSM. 2004. Ronozyme® P5000 (CT) specifications and tests. DSM Nutritional Products Ltd. Edward, J. M., and H. J. Abul. 2003. The term phytase comprises several different classes of enzymes. Biochem. Biophys. Res. Commun. 312: 179-184. Eeckhout, W., and M. De Paepe. 1994. Total phosphorus, phytate phosphorus and phytase activity in plant feedstuffs. Anim. Feed Sci. echnol.47:19-29. Fouad, M. T. Chelation and chelated minerals. 1976. In 16th Annual I. C. A. N. Furrer, O. J., and W. Stauffer. 1987. Phosphat in Landwirtschaft und Umwelt, Eidgenössische Forschungsanstalt für Agrikulturchemie und Umwelthygiene. FAC, Liebefeld-Bern. 83-90. Gibson, D. M., and A. H. Ullah. 1988. Purification and characterization of phytase from cotyledons of germinating soybean seeds. Arch. Biochem. Biophys. 260:503-513. Golovan, S. P., M. A. Hayes, J. P. Phillips, and C. W. Forsberg. 2001a. Transgenic mice expressing bacterial phytase as a model for phosphorus pollution control. Nat. Biotechnol. 19: 429-433. Golovan, S. P., R. G. Meidinger, A. Ajakaiye, M. Cottrill, M. Z. Wiederkehr, D. Barney, C. Plante, J. Pollard, M. Z. Fan, M. A. Hayes, J. Laursen, J. P. Hjorth, R. R. Hacker, J. P. Phillips, and C. W. Forsberg. 2001b. Pigs expressing salivary phytase produce low-phosphorus manure. Nat. Biotechnol. 19:741-745. Graf, E., Empson, K. L., and J. W. Eaton. 1987. Phytic acid: a natural antioxidant. J. Biol. Chem. 262:11647-11650. Grases, F., M. Ramis, and A. Costa-Bauza. 2000. Effects of phytate and pyrophosphate on brushite and hydroxyapatite crystallization. Comparison with the action of other polyphosphates. Urol. Res. 28:136-140. Haefner, S., A. Knietsch, E. Scholten, J. Braun, M. Lohscheidt, and O. Zelder. 2005. Biotechnological production and applications of phytases. Appl. Microbiol Biotechnol. 68:588-597. Harland, B. F., and D. Oberleas. 1999. Phytic acid complex in feed ingredients. In: Coelho MB, Kornegay ET (eds) Phytase in animal nutrition and waste mansgement, 2nd rev end. BASF, Mexicon. 69-76. Henman, D. 2001. Organic mineral supplements in pig nutrition: Performance and meat quality, reproduction and environmental responses. Pages 297-304 in Nutritional Biotechnology in the Feed and Food Industries, Proceedings of the 17th Annual Symposium. T. P. Lyons and K. A. Jacques, ed. Nottingham Univ. Press, Nottingham, UK. Igbasan, F. A., O. Simon, G. Miksch, and K. Manner. 2001. The effectiveness of an Escherichia coli phytase in improving phosphorus and calcium bioavailabilities in poultry and young pigs. Arch. Tierernahr. 54:117-126. Jacob, L. 1989. High-performance liquid chromatography analysis of phytic acid on a pH-stable, macroporous polymer column. Cereal Chem. 66 (6):510-515. Jeremy, D. W., H. J. Abul, S. Kandan, J. M. Edward, and G. L. Xin. 2009. Impact of assay conditions on activity estimate and kinetics comparison of Aspergillus niger PhyA and Escherichia coli AppA2 phytases. J. Agric. Food Chem. 57:5315-5320. Kemme, P. A., A. W. Jongbloed, Z. Mroz, and A. C. Beynen. 1997. The efficacy of Aspergillus niger phytase in rendering phytate phosphorus available for absorption in pigs is influenced by pig physiological status. J. Anim. Sci. 75: 2129-2138. Kim, Y. O., H. K. Kim, K. S. Bae, J. H. Yu, and T. K. Oh. 1998. Purification and properties of a thermostable phytase from Bacillus sp. DS11. Enzyme Microb. Technol. 22:2-7. Kim, T. W. and X. G. Lei. 2005. An improved method for a rapid determination of phytase activity in animal feed. J. Anim. Sci. 83:1062-1067. Lee, D. Y., J. Schroeder, and D. T. Gordon. 1988.Enhancement of Cu bioavailability in the rat by phytic acid. J. Nutr. 118:712-717. Leeson, S. 2003. A new look at trace mineral nutrition of poultry: Can we reduce environmental burden of poultry manure? 125-131. Pages 125–131 in Nutritional Biotechnology in the Feed and Food Industries, Proceedings of the 19th Annual Symposium. T. P. Lyons and K. A. Jacques, ed. Nottingham Univ. Press, Nottingham, UK. Liu, B. L., A. Rafiq, Y. M. Tzeng, and A. Rob. 1998. The induction and characterization of phytase and beyond. Enzyme Microb. Technol. 22: 415-423. Maiti, I. B., A. L. Majumder and B. B. Biswas. 1974. Purification and mode of action of phytase from Phaseolus aureus. Phytochemistry. 13: 1047-1051. Mallett, A. K., C. A. Bearne, and I. R. Rowland. 1989. The influence of incubation pH on the activity of rat and human gut flora enzymes. J. Appl. Bacteriol. 66:433-437. Mandal, N. C., S. Burnman, and B. B. Biswas. 1972. Isolation, purification and characterization of phytase from germinating mung beans. Phytochemistry. 11:495-502. McIntyre, A., P. R. Gibson, and G. P. Young. 1993. Butyrate production from dietary fibre and protection against large bowel cancer in a rat model. Gut. 34: 386-391. Mroz, Z., A. W. Jongbloed, and P. A. Kemme. 1994. Apparent digestibility and retention of nutrients bound to phytate complexes as influenced by microbial phytase and feeding regimen in pigs. J. Anim. Sci. 72:126-132. Mullaney, E. J., and A. H. Ullah. 2003. The term phytase comprises several different classes of enzymes. Biochem. Biophys. Res. Commun. 312: 179-184. Nagai, M., M. Nishibu, Y. Sugita, and Y. Yoneyama. 1975. The effects of inositol hexaphosphate on the allosteric properties of two beta-99-substituted abnormal hemoglobins, hemoglobin Yakima and hemoglobin Kempsey. J. Biol. Chem. 250:3169-3173. Newmark, H. L. and J. R. Lupton. 1990. Determinants and consequences of colonic luminal pH: implications for colon cancer. Nutr. Cancer 14: 161-173. Nielsen, F. H., M. L. Sunde, and W. G. Hoekstra. 1966. Effect of some dietary synthetic and natural chelating agents on the zinc-deficient syndrome in the chick. J. Nutr. 89: 35-42. Nollet, L., J. D. Van der klis, M. Lensing and P. Spring. 2007. The effect of replacing inorganic with organic trace minerals in broiler diets on productive performance and mineral excretion. Poult. Sci. Association, Inc. 16:592-597. Oh, B. C., W. C. Choi, S. Park, Y. O. Kim, and T. K. Oh. 2004. Biochemical properties and substrate specificities of alkaline and histidine acid phytases. Appl. Microbiol Biotechnol. 63:362-372. Pallauf, J. and G. Rimbach. 1997. Nutritional significance of phytic acid and phytase. Archives of Animal Nutrition.50:301-319. Park, S. C., B. C. Oh, M. H. Rhee, K. S. Jeong, K. W. Lee, J. C. Song, and T. K. Oh. 2003. The enzyme activity of a novel phytase from Bacillus amyloliquefaciens DS11 and its potential use as a feed pellet. J. Gen. Appl. Microbiol. 49:129-133. Pasamontes, L., M. Haiker, M. Wyss, M. Tessier, and L.Van. 1997. Gene cloning, purification, and characterization of a heatstable phytase from the fungus Aspergillus fumigatus. Appl. Environ. Microbiol. 63:1696-1700. Patwardhan, V. N. 1937. The occurrence of phitic-splitting enzyme in the intestine of albino rats. Biochem. J. 31: 560-563. Pesti, G. M. and R. I. Bakallli. 1996. Studies on the feeding of cupric sulfate pentahydrate and cupric citrate to broiler chickens. Poult. Sci. 75: 1086-1091. Pointillart, A. 1988. Phytate phosphorus utilisation in growing pigs. In: Buraczewska L, Buraczewska S, Zebrowska T (eds) Digestive physiology in the pig. Proc. 4th International Seminar. Polish Academy of Science, Jablonna, Poland. 192-196. Ravindran, V., W. L. Bryden, and E. T. Kornegay. 1995. Phytates: Occurrence, bioavailability and implications in poultry nutrition. Poult. Avian Biol. Rev. 6:125-143. Rodehutscord M. 2001. Current phosphorus evaluation systems for livestock in Germany. Lohmann-Inf. 25: 1-8 SAS Institute, Inc. 2009. Statistical Analysis System Proprietary Software. Sandberg, A. S., M. Brune, N. G. Carlsson, L. Hallberg, E. Skoglund, and L. Rossander-Hulthen. 1999. Inositol phosphates with different numbers of phosphate groups influence iron absorption in humans. Am. J. Clinical Nutr. 70:240-246. Sandberg, A. S., N. G. Carlsson, and U. Svanberg. 1989. Effects of inosito tri-, tetra-, penta, hexaphosphates on in vitro estimation of iron availability. J. Food Sci. 54:159-186. Segueilha, L., C. Lambrechts, H. Boze, G. Moulin, and P. Galzy. 1992. Purification and properties of the phytase from Schwanniomyces castellii. J. Ferment. Bioeng. 74:7-11. Selle, P. H., V. Ravindran, W. L. Bryden, and T. Scott. 2006. Influence of dietary phytate and exogenous phytase on amino acid digestibility in poultry: a review. J. Poult. Sci. 43:89-103. Singh, M., and A. D. Krikorian. 1982. Inhibition of trypsin activity in vitro by phytate. J. Agric. Food Chem. 30:799-800. Stahl, C. H., K. R. Roneker, J. R. Thornton and X. G. Lei. 2000. A new phytase expressed in yeast effectively improves the bioavailability of phytate phosphorus to weanling pigs. J. Anim. Sci. 78: 668-674. Susmira, G., C. Claudia, M. François, and R. Fanny. 2005. Phytic phosphorus and phytase activity activity feed ingredients.Interciencia. 30:24-28. Thompson L. U. 1988. Antinutrients and blood glucose. Food Technol. 42: 123-32. Thornton, J. R. 1981. High colonic pH promotes colorectal cancer. Lancet 1: 1081-1083. Torre, M., Rodriguez, A.R., and F. Saura-Calixto. 1991. Effects of dietary fiber and phytic acid on mineral bioavailability. Crit. Rev. Food. Sci. Nutr. 1: 1-22. Ullah, A. H. J. 1988. Production, rapid purification, and catalytic characterization of extracellular phytase from Aspergillus ficuum. Prep. Biochem. 18: 443-458. Ullah, A. H. J., K. Sethumadhavan, X. G. Lei, and E. J. Mullaney. 2000. Biochemical characterization of cloned Aspergillus fumigates phytase (phyA). Biochem. Biophys. Res. Commun. 275:279-285. Van Der Klis, J. D., and A. D. Kemme. 2002. An appraisal of trace elements: Inorganic and organic. Pages 99–108 in Poultry Feedstuffs: Supply, Composition and Nutritive Value. J. M. McNab and K. N. Boorman, ed. CAB Int., allingford, UK. Vohra, P., G. A. Gray, and F. H. Kartzer. 1965. Phytic acid–metal complexes. Proc. Soc. Exp. Biol. Med.120:447-449. Walsh, G. A., R. A. Murphy, G. F. killen, D. R. Headon, and R. F. Power.1995. Detection and quantification of supplemental fungal β-glucanase activity in animal feed. J. Anim. Sci. 73:1074-1076. Walsh, G. A., R. A. Murphy, G. F. Killeen, R. F. Power. 2004. Quantification of supplemental enzymes in animal feedingstuffs byradial enzyme diffusion. Appl. Microbiol. 67: 70-74. Wyss, M., L. Pasamontes, A. Friedlein, R. Remy, M. Tessier, A. Kronenberger, A. Middendorf, M. Lehmann, L. Schnoebelen, U. Rothlisberger, E. Kusznir, G. Wahl, F. Muller, H. W. Lahm, K. Vogel, and A. P. Loon. 1999. Biophysical characterization of fungal phytases (myo-inositol hexakisphosphate phosphohydrolases): molecular size, glycosylation pattern, and engineering of proteolytic resistance. Appl. Environ. Microbiol. 65:359-366. Yanfang, P. and J. A. Todd. 2006. Effects of copper source and concentration on in vitro phytate phosphorus hydrolysis by phytase. J. Agric. Food Chem. 54:1792-1796. Yip, W., L. Wang, C. Cheng, W. Wu, S. Lung, and B. L. Lim. 2003. The introduction of a phytase gene from Bacillus subtilis improved the growth performance of transgenic tobacco. Biochem. Biophys. Res. Commun. 310: 1148-1154. Zhang, Z. B., E. T. Kornegay, J. S. Radcliffe, D. M. Denbow, H. P. Veit, and C. T. Larsen. 2000. Comparison of genetically engineered microbial and plant phytase for young broilers. Poult. Sci. 79:709-717. Zhou, J.R. and J. W. Erdman. 1995. Phytic acid in health and disease. Crit. Rev. Food Sci. Nutr. 35:495-508. Zimmermann, B., H. J. Lantzsch, R. Mosenthin, F. J. Schoener, H. K. Biesalski and W. Drochner. 2002. Comparative evaluation of the efficacy of cereal and microbial phytases in growing pigs fed diets with marginal phosphorus supply. J . Sci. Food Agric. 82:1298-1304.
植酸酶(phytase)常添加於單胃動物飼糧中作用植酸(phytic acid),釋出植酸所鍵結之磷(phytic acid-phosphorous),供動物體吸收利用。然而,飼糧中之預拌劑含兩價或三價陽離子,易與植酸螯合形成不可溶複合物,進而抑制植酸酶活性。市售植酸酶產品琳瑯滿目,卻無統一之活性單位,故活性檢測多依循製造廠商提供之檢驗法,易造成不同酵素力價間檢測誤差。本試驗目的為進行影響植酸酶活性測定之因子探討及建立擴散法測定植酸酶活性。結果顯示,去離子水添加Tween 20進行酵素萃取所檢測之活性高於以緩衝液萃取。以去離子水配製KH2PO4之檢量線,所測得植酸酶活性顯著低於以緩衝液配製者。以不同分析方法進行不同產品之活性檢測,Ronozyme®之產品活性穩定性優於Natuphos®與Phyzyme®之產品。除了各種濃度之無機Mn與有機Mn-100 ppm外,所有不同濃度之礦物質均顯著(P < 0.05)抑制植酸酶之活性。除高濃度之Cu (500、700 ppm)及Fe (700 ppm)外,無機型態之Fe2+, Zn2+, Cu2+ 和Mn2+ 抑制植酸酶活性的能力,皆高於有機型態之影響。無機型態之礦物質,抑制植酸酶活性能力依序為Cu2+> Fe2+> Zn2+> Mn2+。有機型態之礦物質,抑制植酸酶活性能力依序為Mn2+> Fe2+> Cu2+> Zn2+。商業飼糧配方組成不同,產生之吸光背景值差異甚大,易造成飼糧植酸酶活性分析值誤差,而以酵素擴散圈法可改善以吸光值測定植酸酶活性檢測之缺點。綜上所述,檢測條件與飼糧組成均會顯著影響植酸酶之活性,酵素擴散圈法可檢測不同植酸酶之活性。

Phytase are supplemented in feed to offer hydrolyze phytic acid, releasing phytic acid-phosphorous to meet the P requirement of the monogastric animals. However, premix of feed containing divalent and trivalent cations forms insoluble complexes with phytic acid, causing inhibit phytase activity. There is a variety of commercial phytase products, but hasn't unified activity unit. Therefore, most of measure steps are to follow the ways provided by manufacturers, causing different enzyme activity inaccuracy. The objective of this study is to determine the factors on phytase activity and build radial enzyme diffusion method to measure phytase activity. The results of this study showed that adding Tween 20 to deionized water for extraction conditions had higher phytase activity compared with buffer. KH2PO4 in deionized water for standard curve had significantly lower than buffer. Using different analysis methods to measure varied phytase products activity, we can find out that the stability of Ronozyme® activity was better than Natuphos® and Phyzyme®. Four minerals significantly influenced phytase activity significance (P < 0.05) at different concentration, expect Mn in all inorganic type and organic type at 100 ppm. However, Fe2+, Zn2+, Cu2+ and Mn2+ of inorganic type had higher ability of inhibition compared with organic type, expect Cu (500 ppm,700 ppm) and Fe (700 ppm). In inorganic mineral type, the order of inhibition at phytase was Cu2+> Fe2+> Zn2+> Mn2+. In organic mineral type, the order of inhibition at phytase was Mn2+> Cu2+> Fe2+> Zn2+. The background data of colorimetric methods vary with the ingredients of feed, which causes phytase activity inaccuracy. We can analyze phytase by using radial enzyme diffusion method to improve the disadvantages of colorimetric methods. In conclusion, both conditions of assay and ingredients of food can influence phytase activity significantly while radial enzyme diffusion can analyze different phytase.
Key word: phytase, premix, radial enzyme diffusion method
其他識別: U0005-2308201016481600
Appears in Collections:動物科學系

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.